
Reconciling Multiple Categorical Preferences with
Double Pareto-based Aggregation

Nikos Bikakis1,2?, Karim Benouaret3, and Dimitris Sacharidis2

1National Technical University of Athens, Greece
2IMIS, “Athena” Research Center, Greece 3Inria Nancy – Grand Est, France

Abstract. Given a set of objects and a set of user preferences, both defined over
a set of categorical attributes, the Multiple Categorical Preferences (MCP) prob-
lem is to determine the objects that are considered preferable by all users. In
a naı̈ve interpretation of MCP, matching degrees between objects and users are
aggregated into a single score which ranks objects. Such an approach, though,
obscures and blurs individual preferences, and can be unfair, favoring users with
precise preferences and objects with detailed descriptions. Instead, we propose an
objective and fair interpretation of the MCP problem, based on two Pareto-based
aggregations. We introduce an efficient approach that is based on a transformation
of the categorical attribute values and an index structure. Moreover, we propose
an extension for controlling the number of returned objects. An experimental
study on real and synthetic data finds that our index-based technique is an order
of magnitude faster than a baseline approach, scaling up to millions of objects.

Keywords: Group preferences, Group recommendation, Categorical attributes, Rank
aggregation, Skyline queries, Collective dominance.

1 Introduction

Given a collection of objects and a user’s preference, both defined on a set of attributes,
the general recommendation problem is to identify those objects that are most aligned to
the user’s preference. Several instances of this generic problem have appeared over the
past few years in the Information Retrieval and Database communities; e.g., see [7,26].
This paper deals with an instance of the above class, termed the Multiple Categorical
Preferences (MCP) problem. MCP has three characteristics. (1) Objects are described
by a set of categorical attributes. (2) User preferences are defined on a subset of the
attributes. (3) There are multiple users with distinct, possibly conflicting, preferences.
The MCP problem may appear in several scenarios; for instance, colleagues arranging
for a dinner at a restaurant, friends selecting a vacation plan for a holiday break.

To illustrate MCP, consider the following example. Assume that a three-member
family is looking to buy a new car. Assume a list of available cars, where each is charac-
terized by two categorical attributes, Body and Engine. Figure 1 depicts the hierarchies
for these two attributes; Body is a three-level, and Engine is a four-level hierarchy. Ta-
ble 1 shows the attribute values of four cars, and the family members’ preferences. For
? This work is partially supported by the EU/Greece funded KRIPIS: MEDA Project & the FP7 project DIACHRON

Body

passenger cars sport cars vans

compact family luxury roadster supercar SUV pickup
[1,2) [2,3) [3,4) [4,5) [5,6)[0,1) [6,7)

[0,3) [3,5) [5,7)

[0,7)

(a) Body attribute

Engine

petrol diesel hybrid

1.4 1.6 1.8

regular turbo

1.2 1.4 1.6

regular turbo

1.2 1.4 1.6
[0,1) [1,2)

[2,3) [3,4)

[4,5) [5,6)

[6,7) [7,8)

[8,9) [9,10) [10,11)

[0,4) [4,8) [8,11)

[2,4) [6,8)

[0,11)

(b) Engine attribute

Fig. 1. Attribute hierarchies

Table 1. Objects, Users & Matching vectors

Car Body Engine

o1 family hybrid 1.4
o2 roadster petrol 1.8 turbo
o3 SUV diesel 1.6
o4 compact petrol 1.4

(a) Objects

User Preference

u1 {passenger cars, petrol}
u2 {sport cars}
u3 {petrol 1.8}

(b) Users

User

Car u1 u2 u3

o1 〈1/3, 0〉 〈0, 0〉 〈0, 0〉
o2 〈0, 1/4〉 〈1/2, 0〉 〈0, 1/2〉
o3 〈0, 0〉 〈0, 0〉 〈0, 0〉
o4 〈1/3, 1/4〉 〈0, 0〉 〈0, 0〉

(c) Matching vectors

instance, member u1 prefers passenger cars with petrol engines, while u2 likes sport
cars but states no preference on the engine type.

Observe that if we look at a particular family member, it is straightforward to de-
termine her/his ideal car based on existing methods. For instance, u1 clearly prefers
o4, which is a passenger car with a petrol engine, while u2 clearly favors o2, which is
a sport car. These conclusions are reached using the following reasoning. Each pref-
erence attribute value uj .Ak is matched with the corresponding object attribute value
oi.Ak using, e.g., the Jaccard coefficient |oi.Ak∩uj .Ak|

|oi.Ak∪uj .Ak| , and a matching degree per pref-
erence attribute is derived. Given these degrees, the next step is to “compose” them
into an overall matching degree between a user uj and an object oi. Note that several
techniques are proposed for “composing” matching degrees; e.g., see [16,26]. The sim-
plest option is to compute a linear combination, e.g., the sum, of the individual degrees.
Returning to our example, the matching degrees of user u1 are: 〈1/3, 0〉 for car o1,
〈0, 1/4〉 for car o2, 〈0, 0〉 for car o3, and 〈1/3, 1/4〉 for car o4. Note that independently
of the “composition” method employed, o4 is the most favorable car for user u1. Using
similar reasoning, car o2, is ideal for both users u2, u3.

When all users are taken into consideration, as required by the MCP problem, sev-
eral questions arise. Which is the best car that satisfies the entire family? And more
importantly, what does it mean to be the best car? A simple answer to the latter, would
be the car that has the highest “composite” degree of match to all users. Using a simi-
lar method as before, one can define a collective matching degree that “composes” the
overall matching degrees for each user. This interpretation, however, enforces an ad-
ditional level of “composition”, the first being across attributes, and the second across
users. These compositions obscure and blur the individual preferences per attribute of
each user.

To some extent, the problem at the first “composition” level can be mitigated by
requiring each user to manually define an importance weight among her/his specified
attribute preferences. On the other hand, it is not easy, if possible at all, to assign weights
to users, so that the assignment is fair. There are two reasons for this. First, users may
specify different sets of preference attributes, e.g., u1 specifies Body and Engine, while
u2 only Body. Second, even when considering a particular preference attribute, e.g.,
Engine, users may specify values at different levels of the hierarchy, e.g., u1 specifies a
petrol Engine, while u3 a petrol 1.8 Engine, which is one level below. Similarly, objects
can also have attribute values defined at different levels. Therefore, any “composition”
is bound to be unfair, as it may favor users with specific preferences and objects with de-
tailed descriptions, and disfavor users with broader preferences and objects with coarser
descriptions. This is an inherent difficulty of the MCP problem.

In this work, we introduce the double Pareto-based aggregation, which provides
an objective and fair interpretation to the MCP problem without “compositing” across
preference attributes and users. Under this concept, the matching between a user and
an object forms a matching vector. Each coordinate of this vector corresponds to an
attribute and takes the value of the corresponding matching degree. The first Pareto-
based aggregation is defined over attributes and induces a partial order on these vectors.
Intuitively, for a particular user, the first partial order objectively establishes that an
object is better, i.e., more preferable, than another if it is better on all attributes.

Then, the second Pareto-based aggregation, defined across users, induces the second
partial order on objects. According to this order, an object is better than another, if it
is more preferable according to all users. The answer to the MCP problem is the set
of maximal objects under the second partial order. Note that since this order is only
partial, i.e., two objects may not be comparable, there may exist multiple objects that are
maximal; recall, that an object is maximal if there exists no other object that succeeds it
in the order considered. In essence, it is the fact that this order is partial that guarantees
objectiveness.

There exists a plethora of main-memory algorithms for finding the maximal ele-
ments according to some partial order, e.g., [17]. More recently, since [8], the problem
has received great attention in the data management community, rechristened as the
skyline query, for which several secondary memory algorithms have been proposed.
Therefore, it is possible to adapt an existing algorithm to solve the MCP problem, as we
discuss in Section 2.2. However, such an approach faces two performance limitations.
First, it needs to compute the matching degrees and form the matching vectors for all
objects, before actually executing the algorithm. Second, it makes little sense to apply
index-based methods, which are known to be the most efficient, e.g., the state-of-the-art
method of [23]. The reason is that the entries of the index depend on the specific MCP
instance, and need to be rebuilt from scratch when the user preferences change, even
though the description of objects persists.

To address these limitations, we introduce a novel index-based approach for solving
the MCP problem. The key idea is to index the set of objects that, unlike the set of
matching vectors, remains constant across MCP instances, and defer expensive com-
putation of matching degrees. To achieve this, we apply a simple transformation of the
categorical attribute values to intervals, so that each object translates to a rectangle in the

Euclidean space. Then, we can employ a space partitioning index, e.g., an R∗-Tree, to
hierarchically group the objects. We emphasize that this transformation and index con-
struction is a one-time process, whose cost is amortized across MCP instances, since
the index requires no maintenance, as long as the collection of objects persists. Based
on the transformation and the hierarchical grouping, it is possible to efficiently com-
pute upper bounds for the matching degrees for groups of objects. We then introduce
an algorithm that uses these bounds to guide the search towards objects that are more
likely to belong to the answer set, and at the same time avoid computing unnecessary
matching degrees.

There exists a potential issue of our MCP interpretation when the number of users
becomes very large. In this case, the number of conflicting preferences also increases,
which makes it harder to differentiate among objects. As a result, the cardinality of
the result set increases, which is the cost to pay for being objective. To address this
phenomenon, we relax our requirement for unanimity in the second Pareto-based ag-
gregation, and require only a percentage p% of users to agree. We refer to this extension
as the p-MCP problem; naturally, for p = 100%, it reduces to the regular MCP.

2 Problem Statement

2.1 Definitions
Table 2. Notation

Symbol Definition

A, d Set of attributes, number of attributes (|A|)
Ak , |Ak| Attribute, number of distinct values in Ak

H(Ak), |H(Ak)| Hierarchy of Ak , number of hierarchy nodes
O, oi Set of objects, an object
U , uj Set of users, a user

oi.Ak , uj .Ak Value of attribute Ak in object oi, user uj

oi.Ik , uj .Ik Interval representation of the value of Ak in oi, uj

mj
i Matching vector of object oi to user uj

mj
i .Ak Matching degree of oi to user uj on attribute Ak

oa � ob Object oa is collectively preferred over ob
T The R∗-Tree that indexes the set of objects

Ni, ei R∗-Tree node, the entry for Ni in its parent node
ei.ptr, ei.mbr The pointer to node Ni, the MBR of Ni

Mj
i Maximum matching vector of entry ei to user uj

Mj
i .Ak Maximum matching degree of ei to user uj on Ak

Table 2 shows the most impor-
tant symbols and their defini-
tion. Consider a set of d cate-
gorical attributesA = {A1, . . . ,
Ad}. The domain of each at-
tributeAk is a hierarchyH(Ak).
A hierarchy H(Ak) defines a
tree, where a leaf corresponds to
a lowest-level value, and an in-
ternal node corresponds to a cat-
egory, i.e., a set, comprising all
values within the subtree rooted
at this node. The root of a hier-
archy represents the category covering all lowest-level values. We use the symbol |Ak|
(resp. |H(Ak)|) to denote the number of leaf (resp. all hierarchy) nodes. With reference
to Figure 1a, consider the “Body” attribute. The node “sport cars” is a category and is
essentially a shorthand for the set {“roadster”, “supercar”}, since it contains the two
leaves, “roadster” and “supercar”.

Assume a set of objects O. An object oi ∈ O is defined over all attributes, and
the value of attribute oi.Ak is one of the nodes of the hierarchy H(Ak). For instance,
in Table 1, the value of the “Body” attribute of object o1, is the leaf “family” in the
hierarchy of Figure 1a.

Further, assume a set of users U . A user ui ∈ U is defined over a subset of the
attributes, and for each specified attribute ui.Aj , its value in one of the hierarchyH(Aj)

nodes. For all unspecified attributes, we say that user ui is indifferent to them. Note that,
a user may specify multiple values for each attribute (see [6] for details).

Given an object oi, a user uj , and a specified attribute Ak, the matching degree of
oi to uj with respect to Ak, denoted as mj

i .Ak, is specified by a matching function
M : dom(Ak)× dom(Ak)→ [0, 1]. The matching function defines the relation be-
tween the user’s preferences and the objects attribute values. For an indifferent attribute
Ak of a user uj , we define mj

i .Ak = 1.
Note that, different matching functions can be defined per attribute and user; for

ease of presentation, we assume a single matching function. Moreover, note that this
function can be any user defined function operating on the cardinalities of intersections
and unions of hierarchy attributes. For example, it can be the Jaccard coefficient, i.e.,
mj

i .Ak =
|oi.Ak∩uj .Ak|
|oi.Ak∪uj .Ak| . The numerator counts the number of leaves in the intersection,

while the denominator counts the number of leaves in the union, of the categories oi.Ak

and uj .Ak. Other popular choices are the Overlap coefficient: |oi.Ak∩uj .Ak|
min (|oi.Ak|,|uj .Ak|) , and

the Dice coefficient: 2 |oi.Ak∩uj .Ak|
|oi.Ak|+|uj .Ak| .

In our running example, we assume the Jaccard coefficient. Hence, the match-
ing degree of car o1 to user u1 w.r.t. the “Body” attribute is |“family”∩“passenger cars”|

|“family”∪“passenger cars”| =
|{“family”}|

|{“compact”,“family”,“luxury”}| = 1
3 , where we substituted “passenger cars” with the set

{“compact”, “family”,“luxury”}.
Given an object oi and a user uj , the matching vector of oi to uj , denoted as mj

i , is
a d-dimensional point in [0, 1]d, where its k-th coordinate is the matching degree with
respect to attribute Ak. Furthermore, we define the norm of the matching vector to be
‖mj

i‖ =
∑

Ak∈Am
j
i .Ak. In our example, the matching vector of car o1 to user u1 is

〈1/3, 0〉. All matching vectors of this example are shown in Table 1c.
In the following, we consider a particular user uj and examine the matching vectors.

The first Pareto-based aggregation across the attributes of the matching vectors, induces
the following partial and strict partial “preferred” orders on objects. An object oa is
preferred over ob, for user uj , denoted as oa �j ob iff for every specified attribute Ak

of the user it holds that mj
a.Ak ≥ mj

b.Ak. Moreover, object oa is strictly preferred over
ob, for user uj , denoted as oa �j ob iff oa is preferred over ob and additionally there
exists a specified attribute Ak such that mj

a.Ak > mj
b.Ak. Returning to our example,

consider user u1 and its matching vector 〈1/3, 1/4〉 for o4, and 〈1/3, 0〉 for o1. Observe
that o4 is strictly preferred over o1.

We now consider all users in U . The second Pareto-based aggregation across users,
induces the following strict partial “collectively preferred” order on objects. An object
oa is collectively preferred over ob, if oa is preferred over ob for all users, and there
exists a user uj for which oa is strictly preferred over ob. From Table 1c, it is easy to
see that car o4 is collectively preferred over o1 and o3, because o4 is preferred by all
three users, and strictly preferred by user u1.

The collectively maximal objects in O with respect to users U , is defined as the set
of objects for which there exists no other object that is collectively preferred over them.
In our example, o4 is collectively preferred over o1, and all other objects are collectively
preferred over o3. There exists no object which is collectively preferred over o2 and o4,
and thus are the collectively maximal objects.

We next formally define the MCP problem.
Problem 1. [MCP] Given a set of objects O and a set of users U defined over a set
of categorical attributesA, the Multiple Categorical Preference (MCP) problem is to
find the collectively maximal objects of O with respect to U .

2.2 Baseline MCP Algorithm

The MCP problem can be transformed to a maximal elements problem, or a skyline
query, where the input elements are the matching vectors. Note, however, that the MCP
problem is different than computing the conventional skyline, i.e., over the object’s
attribute values.

Algorithm 1: BSL
Input: objectsO, users U
Output: CM the collectively maximal
Variables:R set of intermediate records

1 foreach oi ∈ O do
2 foreach uj ∈ U do
3 compute mj

i

4 ri[j]← mj
i

5 insert ri intoR
6 CM ← POSkylineAlgo (R)

The Baseline (BSL) method, whose pseu-
docode is depicted in Algorithm 1, takes ad-
vantage of this observation. The basic idea of
BSL is for each object oi (loop in line 1)
and for all users (loop in line 2), to com-
pute the matching vectors mj

i (line 3). Subse-
quently, BSL constructs a |U|-dimensional tu-
ple ri (line 4), so that its j-th entry is a
composite value equal to the matching vector
mj

i of object oi to user uj . When all users
are examined, tuple ri is inserted in the setR (line 5).

The next step is to find the maximal elements, i.e., compute the skyline over the
records in R. It is easy to prove that tuple ri is in the skyline of R iff object oi is
a collectively maximally preferred object of O w.r.t. U . Notice, however, that due to
the two Pareto-based aggregations, each attribute of a record ri ∈ R is also a record
that corresponds to a matching vector, and thus is partially ordered according to the
preferred orders defined in Section 2.1. Finally, in order to compute the skyline of R,
we need to apply a skyline algorithm (line 6), such as [8,23,14].

The computational cost of BSL is the sum of two parts. The first is computing the
matching degrees, which takes O(|O| · |U|) time. The second is computing the sky-
line, which requires O(|O|2 · |U| · d) comparisons, assuming a quadratic time skyline
algorithms is used. Therefore, BSL takes O(|O|2 · |U| · d) time.

3 Index-based MCP Algorithm

3.1 Hierarchy Transformation

This section presents a simple method to transform the hierarchical domain of a cate-
gorical attribute into a numerical domain. The rationale is that numerical domains can
be ordered, and thus tuples can be stored in multidimensional index structures. The
index-based algorithm of Section 3.2 takes advantage of this transformation.

Consider an attributeA and its hierarchyH(A), which forms a tree. We assume that
any internal node has at least two children; if a node has only one child, then this node
and its child are treated as a single node. Furthermore, we assume that there exists an

ordering, e.g., the lexicographic, among the children of any node. Observe that such an
ordering, totally orders all leaf nodes.

The hierarchy transformation assigns an interval to each node, similar to labeling
schemes such as [1]. The i-th leaf of the hierarchy (according to the ordering) is as-
signed the interval [i − 1, i). Then, each internal node is assigned the smallest interval
that covers the intervals of its children. Figure 1 depicts the assigned intervals for all
nodes in the two car hierarchies.

Following this transformation, the value on theAk attribute of an object oi becomes
an interval oi.Ik = [oi.I

−
k , oi.I

+
k). The same holds for a user uj . Therefore, the trans-

formation translates the hierarchy H(Ak) into the numerical domain [0, |Ak|].
An important property of the transformation is that it becomes easy to compute

matching degrees for metrics that are functions on the cardinalities of intersections or
unions of hierarchy attributes. This is due to the following properties, which use the
following notation: for a closed-open interval I = [α, β), define ‖I‖ = β − α. Note
that the proofs can be found in the full version of the paper [6].

Proposition 1. For objects/users x, y, and an attribute Ak, let x.Ik, y.Ik denote the
intervals associated with the value of x, y on Ak. Then the following hold:

(1) |x.Ak| = ‖x.Ik‖
(2) |x.Ak ∩ y.Ak| = ‖x.Ik ∩ y.Ik‖
(3) |x.Ak ∪ y.Ak| = ‖x.Ik‖+ ‖y.Ik‖ − ‖x.Ik ∩ y.Ik‖

3.2 Algorithm Description

This section introduces the Index-based MCP (IND) algorithm. The key ideas of IND
are: (1) apply the hierarchy transformation, previously described, and index the result-
ing intervals, and (2) define upper bounds for the matching degrees of a group of objects,
so as to guide the search and quickly prune unpromising objects.

B
od
y

Engine

o1

o2

o3

o4

ea

eb

ec

u1

u2

u3

u1

Fig. 2. Transformed objects and users

We assume that the set of objects O and
the set of users U are transformed so that
each attribute Ak value is an interval Ik.
Therefore, each object (and user) defines a
(hyper-)rectangle on the d-dimensional carte-
sian product of the numerical domains, i.e.,
[0, |A1|)× · · · × [0, |Ad|).

Figure 2 depicts the transformation of the
objects and users shown in Table 1 for the
hierarchies in Figure 1. For instance, object
o1 is represented as the rectangle [9, 10) ×
[1, 2) in the “Engine”×“Body” plane. Simi-
larly, user u1 is represented as two intervals,
[0, 4), [0, 3), on the transformed “Engine”, “Body” axes, respectively.

The IND algorithm indexes the set of objects in this d-dimensional numerical space.
In particular, IND employs an R∗-Tree T [5], which is well suited to index rectangles.
Each T node corresponds to a disk page, and contains a number of entries. Each entry ei
comprises (1) a pointer ei.ptr, and (2) a Minimum Bounding Rectangle (MBR) ei.mbr.

A leaf entry ei corresponds to an object oi, its pointer oi.ptr is null, and ei.mbr is the
rectangle defined by the intervals of oi. A non-leaf entry ei corresponds to a child node
Ni, its pointer ei.ptr contains the address of Ni, and ei.mbr is the MBR of (i.e., the
tightest rectangle that encloses) the MBRs of the entries within Ni.

Due to the enclosing property of MBRs, the following holds. The MBR of an entry
ei encloses all objects that are stored at the leaf nodes within the T subtree rooted at
node Ni. It is often helpful to associate an entry ei with all the objects it encloses, and
thus treat ei as a group of objects.

Consider a T entry ei and a user uj ∈ U . Given only the information within entry
ei, i.e., its MBR, and not the contents, i.e., its enclosing objects, at the subtree rooted at
Ni, it is impossible to compute the matching vectors for the objects within this subtree.
However, it is possible to derive an upper bound for the matching degrees of any of
these objects.

We define the maximum matching degree M j
i .Ak of entry ei on user uj w.r.t. speci-

fied attributeAk as the highest attainable matching degree of any object that may reside
within ei.mbr. To do this we first need a way to compute lower and upper bounds on
unions and intersections of a user interval with an MBR.

Proposition 2. Fix an attribute Ak. Consider an object/user x, and let Ix, denote the
interval associated with its value on Ak. Also, consider another object/user y whose
interval Iy on Ak is contained within a range Ry . Given an interval I , δ(I) returns 0 if
I is empty, and 1 otherwise. Then the following hold:

(1) 1 ≤ |y.Ak| ≤ ‖Ry‖
(2) δ(Ix ∩Ry) ≤ |x.Ak ∩ y.Ak| ≤ ‖Ix ∩Ry‖
(3) ‖Ix‖+ 1− δ(Ix ∩Ry) ≤ |x.Ak ∪ y.Ak| ≤ ‖Ix‖+ ‖Ry‖ − δ(Ix ∩Ry)

Then, defining the maximum matching degree reduces to appropriately selecting
the lower/upper bounds for the specific matching function used. For example, consider
the case of the Jaccard coefficient, |oi.Ak∩uj .Ak|

|oi.Ak∪uj .Ak| . Assume ei is a non-leaf entry, and let
ei.Rk denote the range of the MBR on the Ak attribute. We also assume that uj .Ik and
ei.Rk overlap. Then, we defineM j

i .Ak =
‖ei.Rk∩uj .Ik‖
‖uj .Ik‖ , where we have used the upper

bound for the intersection in the enumerator and the lower bound for the union in the
denominator, according to Proposition 2. For an indifferent to the user attribute Ak, we
define M j

i .Ak = 1. Now, assume that ei is a leaf entry, that corresponds to object oi.
Then the maximum matching degree M j

i .Ak is equal to the matching degree mj
i .Ak of

oi to uj w.r.t. Ak.
Computing maximum matching degrees for other metrics is straightforward. In any

case, the next proposition shows that an appropriately defined maximum matching de-
gree is an upper bound to the matching degrees of all objects enclosed in entry ei.

Proposition 3. The maximum matching degree M j
i .Ak of entry ei on user uj w.r.t.

specified attribute Ak is an upper bound to the highest matching degree among all ob-
jects in the group that ei defines.

In analogy to the matching vector, the maximum matching vector M j
i of entry ei

on user uj is defined as a d-dimensional vector whose k-th coordinate is the maxi-
mum matching degree M j

i .Ak. Moreover, the norm of the maximum matching vector
is ‖M j

i ‖ =
∑

Ak∈AM
j
i .Ak.

Next, consider a T entry ei and the entire set of users U . We define the score of
an entry ei as score(ei) =

∑
uj∈U ‖M

j
i ‖. This score quantifies how well the enclosed

objects of ei match against all users’ preferences. Clearly, the highest the score, the
more likely that ei contains objects that are good matches to users.

Algorithm 2 presents the pseudocode for IND. The algorithm maintains two data
structures: a heap H which stores T entries sorted by their score, and a list CM of
collectively maximal objects discovered so far. Initially the list CM is empty (line
1), and the root node of the R∗-Tree is read (line 2). The score of each root entry is
computed and all entries are inserted in H (line 3). Then, the following process (loop
in line 4) is repeated as long as H has entries.

Algorithm 2: IND
Input: R∗-Tree T , users U
Output: CM the collectively maximal
Variables: H a heap with T entries sorted by score()

1 CM ← ∅
2 read T root node
3 insert in H the root entries
4 while H is not empty do
5 ex ← pop H
6 if ex is non-leaf then
7 Nx ← read node ex.ptr
8 foreach ei ∈ Nx do
9 pruned← false

10 foreach uj ∈ U do
11 compute Mj

i

12 foreach oa ∈ CM do
13 if ∀Aj : m

j
a�Mj

i ∧ ∃Ak : mk
a�Mk

i
then

14 pruned← true

15 if not pruned then
16 insert ei in H

17 else
18 ox ← ex
19 result← true
20 foreach oa ∈ CM do
21 if oa � ox then
22 result← false

23 if result then
24 insert ox in CM

The H entry with the highest score,
say ex, is popped (line 5). If ex is a
non-leaf entry (line 6), it is expanded,
which means that the node Nx identi-
fied by ex.ptr is read (line 7). For each
child entry ei of Nx (line 8), its maxi-
mum matching degreeM j

i with respect
to every user uj ∈ U is computed (lines
10–11). Then, the list CM is scanned
(loop in line 12). If there exists an ob-
ject oa in CM such that (1) for each
user uj , the matching vector mj

a of oa
is better than M j

i , and (2) there exists a
user uk so that the matching vector mk

a

of oa is strictly better than Mk
i , then

entry ei is discarded (lines 13–15). It
is straightforward to see (from Propo-
sition 3) that if this condition holds,
ei cannot contain any object that is in
the collectively maximal objects, which
guarantees IND’ correctness. When the
condition described does not hold (line
16), the score of ei is computed and ei
is inserted in H (line 17).

Now, consider the case that ex is a leaf entry (line 18), corresponding to object ox
(line 19). The list CM is scanned (loop in line 21). If there exists an object that is
collectively preferred over ox (line 22), it is discarded. Otherwise (line 25–26), ox is
inserted in CM .

The algorithm terminates when H is empty (loop in line 4), at which time the list
CM contains the collectively maximal objects.

IND performs in the worst case O(|O|2 · |U| ·d) comparisons, and computes match-
ing degrees on the fly at a cost ofO(|O| · |U|). Overall, IND takesO(|O|2 · |U| ·d) time,
the same as BSL. However, in practice IND is more than an order of magnitude faster
than BSL (see Section 6).

4 The p-MCP Problem

As the number of users increases, it becomes more likely that the users express very
different and conflicting preferences. Hence, it becomes difficult to find a pair of objects
such that the users unanimously agree that one is worst than the other. Ultimately, the
number of maximally preferred objects increases. This means that the answer to an
MCP problem with a large set of users becomes less meaningful.

The root cause of this problem is that we require unanimity in deciding whether an
object is collectively preferred by the set of users. The following definition relaxes this
requirement. An object oa is p-collectively preferred over ob, denoted as oa �p ob, iff
there exist a subset Up ⊆ U of at least p

100 · |U| users such that for each user ui ∈ Up
oa is preferred over ob, and there exists a user uj ∈ Up for which oa is strictly preferred
over ob. In other words, we require only p% of the users votes to decide whether an
object is universally preferred. Similarly, the p-collectively maximal objects of O with
respect to users U , is defined as the set of objects in O for which there exists no other
object that is p-collectively preferred over them. The above definitions give rise to the
p-MCP problem.

Problem 2. [p-MCP] Given a set of objectsO and a set of users U defined over a set
of categorical attributes A, the p-Multiple Categorical Preference (p-MCP) problem
is to find the p-collectively maximal objects of O with respect to U .

If an object o1 is collectively preferred over o2 is also p-collectively preferred for
any p. Any object that is p-collectively maximal is also collectively maximal for any p.
Therefore, the answere to the p-MCP problem is a subset of the answer to the corre-
sponding MCP. Furthermore, the following transitivity relation holds for three objects
o1, o2, o3: if o1 � o2 and o2 �p o3, then o1 �p o3. This implies that if an object
is not p-collectively maximal, then there must exist a collectively maximal object that
is p-collectively preferred over it. These observations are similar to those for the k-
dominance notion [10].

Based on this observation, we propose a baseline algorithm for the p-MCP prob-
lem, based on BSL (Section 2.2). The p-BSL algorithm first computes the collectively
maximal objects applying BSL. Then among the results, it determines the objects for
which there exists no other object that is p-collectively preferred over them, and re-
ports them. This refinement is implemented using a block-nested loop procedure. Ad-
ditionally, we propose an extension of the IND algorithm (Section 3.2) for the p-MCP
problem, termed p-IND. Pseudocodes and details can be found in [6].

5 Related Work

Recommendation systems. There exist several techniques to specify preferences on
objects. The quantitative preferences, e.g., [2], assign a numeric score to attribute val-
ues, signifying importance. There also exist qualitative preferences, e.g., [16], which are
relatively specified using binary relationships. This work assumes the case of boolean
quantitative preferences, where some attribute values are preferred, while others are
indifferent.

The general goal of recommendation systems [7,26] is to identify those objects that
are most aligned to a user’s preferences. Typically, these systems provide a ranking of
the objects by aggregating user preferences; e.g., [18,2,16,26].

Recently, several methods for group recommendations are proposed [15]. These
methods, recommend items to a group of users, trying to satisfy all the group mem-
bers [24,21]. The existing methods are classified into two approaches. In the first, the
preferences of each group member are combined to create a virtual user; the recom-
mendations to the group are proposed w.r.t. to the virtual user. In the second, individual
recommendations for each member is computed; the recommendations of all members
are merged into a single recommendation.

Several methods to combine different ranked lists are presented in the IR litera-
ture. There the data fusion problem is defined. Given a set of ranked lists of documents
returned by different search engines, construct a single ranked list combining the indi-
vidual rankings; e.g., [3,13].
Pareto-based aggregation. The work of [8] rekindled interest in the problem of finding
the maximal objects and re-introduces it as the skyline operator. An object is dominated
if there exists another object before it according to the partial order enforced by the
Pareto-based aggregation. The maximal objects are referred to as the skyline. The au-
thors propose several external memory algorithms. The most well-known method is
Block Nested Loops (BNL) [8], which checks each point for dominance against the
entire dataset. Sort-based skyline algorithms (i.e., SFS [12], LESS [14], and SaLSa [4])
attempt to reduce the number of dominance checks by sorting the input data first. In
other approaches, multidimensional indexes are used to guide the search and prune large
parts of the space. The most well-known algorithm in this category is BBS [23] which
uses an R-Tree. Specific algorithms are proposed to efficiently compute the skyline over
partially ordered domains [9,28,25,30], metric spaces [11], or non-metric spaces [22].

Several lines of research attempt to address the issue that the size of skyline cannot
be controlled, by introducing new concepts and/or ranking the skyline (see [20] for a
survey). [29] ranks tuples based on the number of records they dominate, [10] relaxes
the notion of dominance, and [19,27] find the k most representative skylines.

6 Experimental Analysis

6.1 Setting

Datasets. We use two datasets in our experimental evaluation. The first is Synthetic,
where objects and users are synthetically generated. All attributes have the same hier-
archy, a binary tree of height log |A|, and thus all attributes have the same number of
leaf hierarchy nodes |A|. To obtain the set of objects, we fix a level, `o (where `o = 1
corresponds to the leaves), in all attribute hierarchies. Then, we randomly select nodes
from this level to obtain the objects’ attribute value. The number of objects is denoted as
|O|, while the number of attributes for each object is denoted as d. Similarly, to obtain
the set of users, we fix a level, `u, in all hierarchies. We further make the assumption
that a user specifies preferences for only one of the attributes. Thus, for each user we
randomly select an attribute, and set its value to a randomly picked hierarchy node at
level `u. The number of users is denoted as |U|.

102

103

104

105

106

107

50K 100K 500K 1M 5M

I/O
s

Number of Objects

IND
BSL-BNL

BSL-SFS
BSL-BBS

(a) I/O Operations

100

101

102

103

104

50K 100K 500K 1M 5M

T
ot

al
 T

im
e

(s
ec

)

Number of Objects

IND
BSL-BNL

BSL-SFS
BSL-BBS

(b) Total Time

Fig. 3. Synthetic Data: Varying |O|

The second dataset is Cars, where we use as objects |O| = 4261 car descriptions re-
trieved from the Web1. We consider two categorical attributes, Body and Engine, having
3 and 4 levels, and 10 and 35 leaf hierarchy nodes, respectively. The user preferences
are selected based on car rankings2. In particular, for the Body attribute, we use the
most popular cars list to derive a subset of desirable nodes at the leaf level. For the
Engine attribute, we use the most fuel efficient cars list to derive a subset of desirable
nodes at the second hierarchy level. As in Synthetic, a user specifies preference on a
single attribute, and thus randomly selects an attribute, and picks its value among the
desirable subsets. Table 3. Parameters (Synthetic)

Symbol Values [Default]

|O| 50K, 100K, [500K], 1M, 5M
d 2, 3, [4], 5, 6
|U| 2, 4, [8], 16, 32

log |A| 4, 6, [8], 10, 12
`o [1], 2, 3, 4, 5
`u [2], 3, 4, 5, 6

Synthetic Data Parameters. Table 3 lists the pa-
rameters that we vary and the range of values ex-
amined for Synthetic. To segregate the effect of each
parameter, we perform six experiments, and in each
we vary a single parameter from the table, while we
set the remaining ones to their default values.
Methods. For the MCP problem, we implement IND (Section 3) and three flavors of
the BSL algorithm (Section 2.2), denoted BSL-BNL, BSL-SFS, and BSL-BBS, which
use the skyline algorithms BNL [8], SFS [12], BBS [23], respectively. Similarly, for the
p-MCP problem (Section 4), we implement the respective extensions of all algorithms
(IND and BSL variants), distinguished by a p prefix. All algorithms were written in
C++, compiled with gcc, and experiments were performed on a 2GHz CPU.
Evaluation Metrics. To guage efficiency of all algorithms, we measure: (1) the number
of disk I/O operations; (2) the number of dominance checks; and (3) the total execution
time, measured in secs. Due to the space limitation, in most cases we present only the
total time graphs; all the graphs can be found in [6].

6.2 Efficiency of MCP algorithms

Results on Synthetic Data

Varying the number of objects. In the first experiment, we study performance with
respect to the objects’ set cardinality |O|. Particularly, we vary the number of objects

1 http://www.carlik.com
2 http://www.edmunds.com/car-reviews/

http://www.carlik.com
http://www.edmunds.com/car-reviews/

100

101

102

103

 2 3 4 5 6

T
ot

al
 T

im
e

(s
ec

)

Number of Attributes

IND
BSL-BNL

BSL-SFS
BSL-BBS

(a) Varying d

100

101

102

103

104

 2 4 8 16 32

T
ot

al
 T

im
e

(s
ec

)

Number of Users

IND
BSL-BNL

BSL-SFS
BSL-BBS

(b) Varying |U|

101

102

103

 4 6 8 10 12

T
ot

al
 T

im
e

(s
ec

)

Number of Hierarchy Levels

IND
BSL-BNL

BSL-SFS
BSL-BBS

(c) Varying log |A|

101

102

103

 1 2 3 4 5
T

ot
al

 T
im

e
(s

ec
)

Hierarchy Level of Objects

IND
BSL-BNL

BSL-SFS
BSL-BBS

(d) Varying `o

Fig. 4. Synthetic Data: Varying several parameters

from 50K up to 5M and measure the number of I/Os, the number of dominance checks,
and the total processing time.

When the number of objects increases, the performance of all methods deteriorates.
The number of I/Os (Figure 3a) performed by IND is much less than the BSL variants,
the reason being BSL needs to construct a file containing matching degrees. Moreover,
the SFS and BBS variants have to preprocess this file, to sort it and build the R-Tree,
respectively. Hence, BSL-BNL requires the fewest I/Os among the BSL variants.

All methods require roughly the same number of dominance checks [6]. IND per-
forms fewer checks, while BSL-BNL the most. Compared to the other BSL variants,
BSL-BNL performs more checks because, unlike the others, computes the skyline over
an unsorted file. IND performs as well as BSL-SFS and BSL-BBS, which have the easi-
est task. Overall, however, Figure 3b shows that IND is more than an order of magnitude
faster than the BSL variants.
Varying the number of attributes. Figure 4a investigates the effect as we increase
the number of attributes d from 2 up to 6. Figure 4a shows that the total time of IND
increases with d, but it is still significantly smaller (more than 4 times) than the BSL
methods even for d = 6.
Varying the number of users. In the next experiment, we vary the users’ set cardinality
|U| from 2 up to 32; results are depicted in Figure 4b. The performance of all methods
deteriorates with |U|. Figure 4b shows that IND is more than an order of magnitude
faster than all the BSL variants, among which BSL-BNL is the fastest.
Varying the hierarchy height. In this experiment, we vary the hierarchy height log |A|
from 4 up to 12 levels. Figure 4c illustrates the results. All methods are largely unaf-
fected by this parameter. Overall, IND is more than an order of magnitude faster than
all BSL variants.

Varying the objects level. Figure 4d depicts the results of varying the level `o from
which we draw the objects’ values. The performance of all methods is not significantly
affected by `o.
Varying the users level. In this experiment, we vary he level `u from which we draw
the users’ preference values. The total time of IND takes its highest value of `u = 6, as
the number of required dominance checks increases sharply for this setting. Still IND
is around 3 times faster than BSL-BNL [6].

Results on Real Data

10-1

100

101

 2 4 8 16 32

T
ot

al
 T

im
e

(s
ec

)

Number of Users

IND
BSL-BNL

BSL-SFS
BSL-BBS

Fig. 5. Cars: varying |U|

In this experiment, we have |O| = 4261 cars
and we vary the number of users |U| from 2 up
to 32. Figure 5 presents the results. As the num-
ber of users increase, the performance of the BSL
variants worsens, while that of IND is slightly af-
fected. This pattern is in analogy to the case of
the Synthetic dataset (Figure 4). For more than 4
users, IND outperforms the BSL methods by at
least an order of magnitude.

6.3 Efficiency of p-MCP algorithms

In this section, we evaluate the p-MCP algorithms using the Car dataset; as before, we
measure the number of I/Os, dominance checks and the total time.
Varying the number of users. Figure 6 shows the effect of varying the number of users
from 8 up to 4096, while p = 30%. The required number of I/Os operations increases
with |U| for both methods, as Figure 6a shows; the rate of increase for p-BSL-BNL is
much higher. Overall, Figure 6b shows that p-IND constantly outperforms p-BSL-BNL
and is up to 1 order of magnitude faster.
Varying parameter p. We increase the parameter p from 10% up to 50%. The perfor-
mance of all methods (in terms of I/Os and total time) remains unaffected by p, and thus
we omit the relevant figures in the interest of space.

101

102

103

104

105

106

107

 16 64 256 1024 4096

I/O
s

Number of Users

p-IND
p-BSL-BNL

p-BSL-SFS
p-BSL-BBS

(a) I/O Operations

10-1

100

101

102

103

104

 16 64 256 1024 4096

T
ot

al
 T

im
e

(s
ec

)

Number of Users

p-IND
p-BSL-BNL

p-BSL-SFS
p-BSL-BBS

(b) Total Time

Fig. 6. p-MCP, Cars: varying |U|

References

1. R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of transitive relationships
in large data and knowledge bases. In SIGMOD, 1989.

2. R. Agrawal and E. L. Wimmers. A framework for expressing and combining preferences. In
SIGMOD, 2000.

3. J. A. Aslam and M. H. Montague. Models for metasearch. In SIGIR, 2001.
4. I. Bartolini, P. Ciaccia, and M. Patella. Efficient Sort-based Skyline Evaluation, TODS,

33(4), 2008.
5. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: An efficient and

robust access method for points and rectangles. In SIGMOD, 1990.
6. N. Bikakis, K. Benouaret, D. Sacharidis. Reconciling multiple categorical preferences with

double pareto-based aggregation. Technical Report 2013, http://www.dblab.ntua.
gr/˜bikakis/MCP.pdf

7. J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems survey.
Knowl.-Based Syst., 46, 2013.

8. S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE, 2001.
9. C. Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified computation of skylines with partially-

ordered domains. In SIGMOD, 2005.
10. C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang. Finding k-dominant

skylines in high dimensional space. In SIGMOD, 2006.
11. L. Chen and X. Lian. Efficient processing of metric skyline queries. TKDE, 21(3), 2009.
12. J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In ICDE, 2003.
13. C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the web.

In WWW, 2001.
14. P. Godfrey, R. Shipley, and J. Gryz. Algorithms and analyses for maximal vector computa-

tion. VLDBJ, 16(1), 2007.
15. A. Jameson and B. Smyth. Recommendation to groups. In The Adaptive Web, 2007.
16. W. Kießling. Foundations of preferences in database systems. In VLDB, 2002.
17. H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors. Journal

of the ACM, 22(4), 1975.
18. M. Lacroix and P. Lavency.Preferences:Putting more knowledge into queries. In VLDB,1987.
19. X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The k most representative skyline

operator. In ICDE, 2007.
20. C. Lofi and W.-T. Balke. On skyline queries and how to choose from pareto sets. In Advanced

Query Processing (1). 2013.
21. E. Ntoutsi, K. Stefanidis, K. Nørvåg, and H.-P. Kriegel. Fast group recommendations by

applying user clustering. In ER, pages 126–140, 2012.
22. D. P, P. M. Deshpande, D. Majumdar, and R. Krishnapuram. Efficient skyline retrieval with

arbitrary similarity measures. In EDBT, 2009.
23. D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in database

systems. TODS, 30(1), 2005.
24. S. B. Roy, S. Amer-Yahia, A. Chawla, G. Das, and C. Yu. Space efficiency in group recom-

mendation. VLDB J., 19(6), 2010.
25. D. Sacharidis, S. Papadopoulos, and D. Papadias. Topologically sorted skylines for partially

ordered domains. In ICDE, 2009.
26. K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on representation, composition and

application of preferences in database systems. TODS, 36(3), 2011.
27. Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based representative skyline. In ICDE, 2009.
28. R. C.-W. Wong, A. W.-C. Fu, J. Pei, Y. S. Ho, T. Wong, and Y. Liu. Efficient skyline querying

with variable user preferences on nominal attributes. VLDB, 1(1), 2008.
29. M. L. Yiu and N. Mamoulis. Efficient processing of top-k dominating queries on multi-

dimensional data. In VLDB, 2007.
30. S. Zhang, N. Mamoulis, B. Kao, and D. W.-L. Cheung. Efficient skyline evaluation over

partially ordered domains. VLDB, 3(1), 2010.

http://www.dblab.ntua.gr/~bikakis/MCP.pdf
http://www.dblab.ntua.gr/~bikakis/MCP.pdf

	Reconciling Multiple Categorical Preferences with Double Pareto-based Aggregation

