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The dissemination of Electronic Health Record (EHR) data, beyond the originating healthcare institutions,
can enable large-scale, low-cost medical studies that have the potential to improve public health. Thus,
funding bodies, such as the National Institutes of Health (NIH) in the U.S., encourage or require the dis-
semination of EHR data, and a growing number of innovative medical investigations are being performed
using such data. However, simply disseminating EHR data, after removing identifying information, may
risk privacy, as patients can still be linked with their record, based on diagnosis codes. This paper pro-
poses the first approach that prevents this type of data linkage using disassociation, an operation that
transforms records by splitting them into carefully selected subsets. Our approach preserves privacy with
significantly lower data utility loss than existing methods and does not require data owners to specify
diagnosis codes that may lead to identity disclosure, as these methods do. Consequently, it can be
employed when data need to be shared broadly and be used in studies, beyond the intended ones.
Through extensive experiments using EHR data, we demonstrate that our method can construct data that
are highly useful for supporting various types of clinical case count studies and general medical analysis
tasks.

� 2014 Published by Elsevier Inc.
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1. Introduction

Healthcare data are increasingly collected in various forms,
including Electronic Health Records (EHR), medical imaging dat-
abases, disease registries, and clinical trials. Disseminating these
data has the potential of offering better healthcare quality at lower
costs, while improving public health. For instance, large amounts
of healthcare data are becoming publicly accessible at no cost,
through open data platforms [4], in an attempt to promote account-
ability, entrepreneurship, and economic growth ($100 billion are
estimated to be generated annually across the US health-care sys-
tem [11]). At the same time, sharing EHR data can greatly reduce
research costs (e.g., there is no need for recruiting patients) and
allow large-scale, complex medical studies. Thus, the National
Institutes of Health (NIH) calls for increasing the reuse of EHR data
[7], and several medical analytic tasks, ranging from building pre-
dictive data mining models [8] to genomic studies [14], are being
performed using such data.
80

81
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83

84
Sharing EHR data is highly beneficial but must be performed in
a way that preserves patient and institutional privacy. In fact, there
are several data sharing policies and regulations that govern the
sharing of patient-specific data, such as the HIPAA privacy rule
[48], in the U.S., the Anonymization Code [6], in the U.K., and the
Data Protection Directive [3], in the European Union. In addition,
funding bodies emphasize the need for privacy-preserving health-
care data sharing. For instance, the NIH requires data involved in
all NIH-funded Genome-Wide Association Studies (GWAS) to be
deposited into a biorepository, for broad dissemination [45], while
safeguarding privacy [1]. Alarmingly, however, a large number of
privacy breaches, related to healthcare data, still occur. For exam-
ple, 627 privacy breaches, which affect more than 500 and up to
4.9 M individuals each, are reported from 2010 to July 2013 by
the U.S. Department of Health & Human Services [15].

One of the main privacy threats when sharing EHR data is iden-
tity disclosure (also referred to as re-identification), which involves
the association of an identified patient with their record in the
published data. Identity disclosure may occur even when data
are de-identified (i.e., they are devoid of identifying information).
This is because publicly available datasets, such as voter registra-
tion lists, contain identifying information and can be linked to pub-
lished datasets, based on potentially identifying information, such
0.1016/
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as demographics [53], diagnosis codes [34], and lab results [9]. The
focus of our work is on diagnosis codes, because: (i) they pose a
high level of re-identification risk [34], and (ii) ensuring that diag-
nosis codes are shared in a privacy-preserving way, is challenging,
due to their characteristics [56,25,28]. For example, more than 96%
of 2700 patient records that are involved in an NIH-funded GWAS
were shown to be uniquely re-identifiable, based on diagnosis
codes, and, applying popular privacy-preserving methods, distorts
the published data to the point that they lose their clinical utility
[34].

To perform identity disclosure, an attacker must possess three
types of knowledge: (i) a patient’s identity, (ii) a set of diagnosis
codes, and (iii) whether a patient is included in the published data-
set (research sample) [36]. Knowledge of the first two types can
come in the form of background knowledge [36] or may be solic-
ited by exploiting external data sources.1 At the same time, knowl-
edge of the third type is obtainable through interaction with data
subjects [19], or it can be inferred by applying the procedure used
to create the research sample from a larger patient population,
which is often described in the literature [36]. To see how identity
disclosure may occur, consider the de-identified data in Fig. 1. In
these data, each record corresponds to a distinct patient and con-
tains the set of diagnosis codes that this patient is associated with.
The description of the diagnosis codes in Fig. 1 is shown in Fig. 2.
An attacker, who knows that a patient is diagnosed with Bipolar I dis-
order, single manic episode, mild (denoted with the code 296.01) and
Closed dislocation of finger, unspecified part (denoted with 834.0), can
associate an identified patient with the first record, denoted with r1,
in the data of Fig. 1, as the set of codes f296:01;834:0g appears in no
other record. Note that the attacker cannot perform this association,
based on knowledge of either 296.01 or 834.0, but can associate the
identified patient with r1, if they know any other code or codes, in
addition to the set of codes f296:01;834:0g. Notice also that, in this
work, we consider ICD-9 codes,2 following [36,35]. However, our
approach can be applied to other standardized codes, such as Com-
mon Procedure Terminology (CPT) codes.

1.1. Motivation

Preventing identity disclosure based on diagnosis codes is pos-
sible by applying the methods proposed in [36,35]. Both methods
transform diagnosis codes to ensure that the probability of per-
forming identity disclosure, based on specified sets of diagnosis
codes, will not exceed a data-owner specified parameter k. Data
transformation is performed using generalization (i.e., by replacing
diagnosis codes with more general, but semantically consistent,
ones) and suppression (i.e., by deleting diagnosis codes). Further-
more, both methods aim at transforming data in a way that does
not affect the findings of biomedical analysis tasks that the data
are intended for. These tasks are specified by data owners and used
to control the potential ways diagnosis codes are generalized and/
or suppressed. For example, applying the Clustering-Based Anony-
mizer (CBA) algorithm [35], which outperforms the method in
[36] in terms of preserving data utility, to the data in Fig. 1, pro-
duces the data in Fig. 3(a). In this example, CBA was applied using
k ¼ 3 and with the goal of (i) thwarting identity disclosure, based
on all sets of 2 diagnosis codes, and (ii) preserving the findings of
studies u1 to u5 in Fig. 3(b), which require counting the number
of patients diagnosed with any combination of codes in them.
Observe that the codes 294.10, 295.04, and 296.00 to 296.03 are
generalized to ð294:10;295:04;296:00;296:01;296:02;296:03Þ,
189

190
1 These include publicly available voter lists combined with hospital discharge

summaries [51], or the identified EHR system available to the primary care
environment [34].

2 http://www.cdc.gov/nchs/data/icd9/icdguide10.pdf.
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which is interpreted as any non-empty subset of these codes,
and that 7 out of 13 distinct codes are suppressed. The result of
CBA thwarts identity disclosure (i.e., all combinations of 2 diagno-
sis codes appear at least 3 times in Fig. 3) and allows performing u1

and u3 accurately. To see why this is the case, consider u3, for
example. Note that 4 patients are associated with a combination
of the codes f401:0;404:00g in u3, in both Fig. 1 and in Fig. 3(a).
However, the studies u2;u4, and u5 can no longer be performed
accurately, as some of their associated diagnosis codes have been
suppressed.

In fact, the methods in [36,35] assume a setting in which data
owners possess domain expertise that allows them to specify: (i)
sets of diagnosis codes that lead to identity disclosure, and (ii) sets
of diagnosis codes that model analytic tasks that the published
data are intended for. The ability of the published data to support
these tasks is a strong requirement, and suppression is used when
this requirement cannot be satisfied.3 As can be seen in Fig. 3(a), the
fact that u2 ¼ f692:71;695:10g was not satisfied led CBA to suppress
both 692.71 and 695.10. The setting considered in [36,35] can model
some real data sharing scenarios, such as the sharing of data
between collaborating researchers, who perform specific analytic
tasks [36].

However, it is important to consider a different setting, where
data are shared more broadly and may be used for studies beyond
those that are specified by data owners. This setting becomes
increasingly common, as databanks (e.g., [2,5]) host a wide range
of patient-specific data and grow in size and popularity. Address-
ing this setting calls for developing methods that offer strong pri-
vacy and permit the publishing of data that remain useful, for
analytic tasks that cannot be predetermined, in addition to any
intended ones. In fact, the aforementioned methods [36,35] are
not suitable for this setting, because their application would cause
excessive loss of data utility, as it will become clear later.

1.2. Contributions

In this paper, we propose the first approach for the privacy-
preserving sharing of diagnosis codes under this new setting. Our
approach allows data owners to share data that prevent identity
disclosure, and does not incur excessive information loss or harm
the usefulness of data in medical analysis. This work makes the fol-
lowing specific contributions.

First, we develop an effective algorithm that prevents identity
disclosure, based on all sets of m or fewer diagnosis codes, by lim-
iting its probability to 1

k, where k and m are data-owner specified
parameters. To achieve this, the algorithm transforms data using
disassociation, an operation that splits the records into carefully
constructed subrecords, containing original (i.e., non-transformed)
diagnosis codes. As such, disassociation can ‘‘hide’’ combinations of
3 Due to the computational complexity of the problem, no guarantees that these
requirements will be satisfied are provided by the methods in [36,35].

health record privacy. J Biomed Inform (2014), http://dx.doi.org/10.1016/
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diagnosis codes that appear few times in the original dataset, by
scattering them in the subrecords of the published dataset. For
instance, consider the record r1 in Fig. 1 and its counterpart, which
has produced by applying disassociation with k ¼ 3 and m ¼ 2, in
Fig. 4. Note that the codes in r1 are split into two subrecords in
Fig. 4, which contain the sets of codes f296:00;296:01;296:02g
and f834:0;401:0;944:01g, respectively. Moreover, the set
f834:0;401:0;944:01g is associated with the first 5 records in
Fig. 4. Thus, an attacker who knows that a patient is diagnosed
with the set of codes f296:01;834:00g cannot associate them with
fewer than 3 records in Fig. 4. Thus, strong privacy requirements
can be specified, without knowledge of potentially identifying
diagnosis codes, and they can be enforced with low information
loss. In addition, published data can still remain useful for intended
analytic tasks. For instance, as can be seen in Fig. 4, applying our
algorithm to the data in Fig. 1, using k ¼ 3 and m ¼ 2, achieves
the same privacy, but significantly better data utility, than CBA,
whose result is shown in Fig. 3(a). This is because, in contrast to
CBA, our algorithm does not suppress diagnosis codes and retains
the exact counts of 8 out of 13 codes (i.e., those in u1 and u3). More-
over, our algorithm is able to preserve the findings of the first two
studies in Fig. 3(b).

Second, we experimentally demonstrate that our approach pre-
serves data utility significantly better than CBA [35]. Specifically,
Please cite this article in press as: Loukides G et al. Disassociation for electronic
j.jbi.2014.05.009
when applied to a large EHR dataset [8], our approach allows more
accurate query answering and generates data that are highly useful
for supporting various types of clinical case count studies and gen-
eral medical analysis tasks. In addition, our approach is more effi-
cient and scalable than CBA.
1.3. Paper organization

The remainder of the paper is organized as follows. Section 2
reviews related work and Section 3 presents the concepts that are
necessary to introduce our method and formulate the problem we
consider. In Sections 4 and 6, we discuss and experimentally evalu-
ate our algorithm, respectively. Subsequently, we explain how our
approach can be extended to deal with different types of medical
data and privacy requirements in Section 7. Last, Section 8 con-
cludes the paper.
2. Related work

There are considerable research efforts for designing privacy-
preserving methods [52,49,57,22,10,23,24,51,19,44,36]. Our work
is closely related to methods which aim to publish patient-level
data, in a way that prevents identity disclosure. Thus, we review
health record privacy. J Biomed Inform (2014), http://dx.doi.org/10.1016/
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these methods, in Section 2.1. We also discuss differential privacy, a
privacy model that allows releasing noisy query results or noisy
data summaries, in Section 2.2.

2.1. Preventing identity disclosure

The threat of identity disclosure in medical data publishing was
firstly pointed out by Sweeney [51], and it has since attracted sig-
nificant research interest [26,19,42,17,20,18,44]. Although other
threats have been considered [41,40,59,39], ‘‘all the publicly known
examples of re-identification of personal information have involved
identity disclosure’’ [18].

The majority of works focus on preventing identity disclosure
via relational data (i.e., data in which a patient is associated with
a fixed, and typically small number of attributes), which naturally
model patient demographics, and apply generalization [51,53,31] or
suppression [51,53]. Different from this line of research, we con-
sider data containing diagnosis codes, which require different han-
dling than relational data, and apply disassociation, which
generally incurs lower information loss than generalization and
suppression.

Anonymizing diagnosis codes can be achieved by modeling
them using a transaction attribute and enforcing a privacy model
for transaction data [37,39,28,56,61,54,38]. The value in a transac-
tion attribute is a set of items (itemset), which, in our case, corre-
sponds to a patient’s diagnosis codes. In [28], He et al. proposed
a privacy model, called complete k-anonymity, and a generaliza-
tion-based algorithm, called Partition. Terrovitis et al. [56] pro-
posed a more flexible privacy model, called km-anonymity, and
an algorithm, called Apriori. Apriori uses an effective way of gener-
alizing values, referred to as full-subtree, global generalization,
which was first proposed in [29]. A suppression-based algorithm
for protecting identity disclosure was proposed in [61].

Loukides et al. [36] showed that the algorithms proposed in
[28,56,61] are not suited to anonymizing diagnosis codes. This is
because, they explore a small number of possible ways to anony-
mize diagnosis codes, and they are inadequate to generate data
that support biomedical analysis tasks. In response, they proposed
two algorithms; Utility-Guided Anonymization of Clinical Profiles
(UGACLIP) [36] and Clustering-Based Anonymizer (CBA) [35]. Both
algorithms apply generalization to certain sets of diagnosis codes
and aim at preserving specific associations between diagnosis
codes, which are modeled as utility constraints. However, CBA is
more effective than UGACLIP in terms of supporting the specified
associations and in terms of incurring low information loss. As dis-
cussed in Introduction, our approach is developed for a different
data sharing scenario than that of [36,35], and it applies a different
privacy model and data transformation technique.
Please cite this article in press as: Loukides G et al. Disassociation for electronic
j.jbi.2014.05.009
2.2. Preserving privacy through differential privacy

Another privacy model, called differential privacy [16], has
attracted significant attention [46,30,21] and has recently been
applied to medical data [24]. Differential privacy ensures that the
outcome of a calculation is insensitive to any particular record in
the dataset. This offers privacy, because the inferences that can
be made about an individual will be (approximately) independent
of whether any individuals record is contained in the dataset or
not. Differential privacy makes no assumptions about an attacker’s
background knowledge, unlike km-anonymity, although its
enforcement does not guarantee the prevention of all attacks
[12]. However, differential privacy allows either noisy answers to
a limited number of queries, or noisy summary statistics to be
released, and there are a number of limitations regarding its appli-
cation on healthcare data [13]. In addition, differentially private
data may be of much lower utility compared to km-anonymous
data produced by disassociation, as shown in [55].
3. Background

In the previous sections, we highlighted how a patient can be
identified by simply tracing records that contain unique combina-
tions of diagnosis codes. Here, we present a concrete attack model
and an effective data transformation operation, called disassocia-
tion. Disassociation can be used to guarantee patient privacy with
respect to this model, while incurring minimal data utility loss. To
quantify the loss of data utility caused by disassociation, we also
discuss two measures that capture different requirements of med-
ical data applications.
3.1. Attack model and privacy guarantee

We assume a dataset D of records (transactions), each of which
contains a set of diagnosis codes (items) from a finite domain T.
The number of records in D is denoted with j D j. Each record in
D refers to a different patient and contains the set of all diagnosis
codes associated with them. An example of a dataset is shown in
Fig. 1. Each record in this dataset contains some diagnosis codes,
and the domain of diagnosis codes is shown in Fig. 2. In contrast
to the traditional attack models for relational data [41,33], we do
not distinguish between sensitive (unknown to the attacker) and
non-sensitive items in a record. Instead, we assume that any item
is a potential quasi-identifier and, hence, it may lead to identity
disclosure. Besides the dataset D we also assume a set of utility
constraints U [36], also referred to as utility policy. As discussed
in Section 2, utility constraints model associations between diag-
health record privacy. J Biomed Inform (2014), http://dx.doi.org/10.1016/
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nosis codes that anonymized data are intended for. Each utility
constraint u in U is a set of items from T, and all constraints in U
are disjoint. Fig. 3(b) illustrates an example of a set of utility
constraints.

We now explain the attack model considered in this work. In
this model, an attacker knows up to m items of a record r in D,
where m P 1. The case of attackers with no background knowl-
edge (i.e., m ¼ 0) is trivial, and it is easy to see that the results of
our theoretical analysis are applicable to this setting as well. Note
that, different from the methods in [36,35], the items that may be
exploited by attackers are considered unknown to data owners.
Also, there may be multiple attackers, each of which knows a
(not necessarily distinct) set of up to m items of a record r. Other
attacks and the ability of our method to thwart them are discussed
in Section 7.

Based on their knowledge, an attacker can associate the identi-
fied patient with their record r, breaching privacy. To thwart this
threat, our work employs the privacy model of km-anonymity
[56]. km-anonymity is a conditional form of k-anonymity, which
ensures that an attacker with partial knowledge of a record r, as
explained above, will not be able to distinguish r from k� 1 other
records in the published dataset. In other words, the probability
that the attacker performs identity disclosure is upperbounded
by 1

k. More formally:

Definition 1. An anonymized dataset DA is km-anonymous if no
attacker with background knowledge of up to m items of a record r
in DA can use these items to identify fewer than k candidate
records in DA.

For the original dataset D and its anonymized counterpart DA,
we define two transformations A and I . The anonymization trans-
formation A takes as input a dataset D and produces an anony-
mized dataset DA. The inverse transformation I takes as input
the anonymized dataset DA and outputs all possible (non-anony-
mized) datasets that could produce DA, i.e., IðDAÞ ¼
fD0 j DA ¼ AðDÞg. Obviously, the original dataset D is one of the
datasets in IðAðDÞÞ. To achieve km-anonymity (Definition 1) in
our setting, we enforce the following privacy guarantee (from
[55]).

Guarantee 1. Consider an anonymized dataset DA and a set S of up
to m items. Applying IðDAÞ, will always produce at least one
dataset D0 2 IðDAÞ for which there are at least k records that
contain all items in S.

Intuitively, an attacker, who knows any set S of up to m diagno-
sis codes about a patient, will have to consider at least k candidate
records in a possible original dataset. We provide a concrete exam-
ple to illustrate this in the next subsection.
431

432

433

Fig. 5. A possible dataset D0 reconstructed from DA of Fig. 4.
3.2. Overview of the disassociation transformation strategy

In this section, we present disassociation, a data transformation
strategy that partitions the records in the original dataset D into
subrecords, following the basic principles of the strategy presented
in [55]. The goal of our strategy is to ‘‘hide’’ combinations of diag-
nosis codes that appear few times in D, by scattering them in the
subrecords of the published dataset. The particular merit of disas-
sociation is that it preserves all original diagnosis codes in the pub-
lished dataset, in contrast to generalization and suppression. This
is important to preserve data utility in various medical analysis
tasks that cannot be predetermined, as explained in the introduc-
tion and will be verified experimentally.

To illustrate the main idea of disassociation, we use Fig. 4,
which shows a disassociated dataset produced from the original
dataset D of Fig. 1. Observe that the dataset in Fig. 4 is divided into
Please cite this article in press as: Loukides G et al. Disassociation for electronic
j.jbi.2014.05.009
two clusters, P1 and P2, which contain the records r1 � r5 and
r6 � r10, respectively. Furthermore, the diagnosis codes in a cluster
are divided into subsets, and each record in the cluster is split into
subrecords according to these subsets. For example, the diagnosis
codes in P1 are divided into subsets T1 ¼ f296:00; 296:01; 296:02g;
T2 ¼ f692:71; 695:10g, and TT ¼ f834:0; 401:0; 944:01g, according to
which r1 is split into three subrecords; f296:00; 296:01; 296:02g, an
empty subrecord {}, and f834:0; 944:01g. The collection of all (possi-
bly empty) subrecords of different records that correspond to the
same subset of diagnosis codes is called a chunk. For instance,
the subrecord f296:00; 296:01; 296:02g of r1 goes into chunk C1, the
empty subrecord goes into chunk C2, and the subrecord
f834:0; 944:01g goes into chunk CT . In contrast to C1 and C2 which
are record chunks, CT is a special, item chunk, containing a single
set of diagnosis codes. In our example, CT contains the set
f834:0; 401:0; 944:01g, which represents the subrecords from all
r1 � r5 containing these codes. Thus, the number of times each
diagnosis code in CT appears in the original dataset is completely
hidden from the attacker, who can only assume that this number
ranges from 1 to j Pi j, where j Pi j is the number of records in Pi.

In addition, the order of the subrecords that fall into a chunk is
randomized, which implies that the association between subre-
cords in different chunks is hidden from the attacker. In fact, the
original dataset D may contain any record that could be recon-
structed by a combination of subrecords from the different chunks
plus any subset of diagnosis codes from CT . For example,
f296:00; 296:01; 834:0; 944:01g in Fig. 5 is a reconstructed record,
which is created by taking f296:00; 296:01g from C1, the empty sub-
record {} from C2, and f834:0; 944:01g from CT . Observe that this
record does not appear in the original dataset of Fig. 1. The disas-
sociated dataset DA amounts to the set of all possible original data-
sets IðDAÞ (see Guarantee 1). In other words, the original dataset D
is hidden, among all possible datasets that can be reconstructed
from DA. A dataset, which is reconstructed from the disassociated
dataset in Fig. 4, is shown in Fig. 5. Note that reconstructed data-
sets can be greatly useful to data analysts, because (i) they have
similar statistical properties to the original dataset from which
they are produced, and (ii) they can be analyzed directly, using
off-the-shelf tools (e.g., SPSS), in contrast to generalized datasets
that require special handling (e.g., interpreting a generalized code
as an original diagnosis code, with a certain probability).

As an example, consider the dataset in Fig. 4, which satisfies
Guarantee 1, for k ¼ 3 and m ¼ 2. Observe that an attacker, who
knows up to m ¼ 2 codes from a record r of the original dataset
in Fig. 1, must consider a reconstructed dataset that has at least
3 records containing the codes known to them. We emphasize that
each of these codes can appear in any chunk of a cluster in DA,
including the item chunk. For instance, an attacker, who knows
that the record of a patient contains 296:01 and 834:0, must consider
the dataset in Fig. 5. In this dataset, the combination of these codes
appears in the records r1; r2, and r3.
health record privacy. J Biomed Inform (2014), http://dx.doi.org/10.1016/
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3.3. Measuring data utility

Different datasets that can be produced by an original dataset,
using disassociation, do not offer the same utility. In addition, most
existing measures for anonymized data using generalization and/
or suppression, such as those proposed in [56,61,36,35], are not
applicable to disassociated datasets. Therefore, we measure data
utility using the accuracy of: (i) answering COUNT queries on dis-
associated data, and (ii) estimating the number of records that are
associated with any set of diagnosis codes in a utility constraint
(i.e., matched to the constraint). The first way to measure data util-
ity considers a scenario in which data recipients issue queries to
perform case counting (i.e., discover the number of patients diag-
nosed with a set of one or more diagnosis codes, using COUNT que-
ries). Alike other transformation strategies, disassociation may
degrade the accuracy of answering COUNT queries [36,55]. Thus,
a utility measure must capture how accurately such queries can
be answered using disassociated data. The second way to quantify
data utility considers a scenario in which various analytic tasks,
simulated through different utility policies, are performed by data
recipients. To the best of our knowledge, there are no measures
that can capture data utility in this scenario.

To quantify the accuracy of answering a workload of COUNT
queries on disassociated data, we use the Average Relative Error
(ARE) measure and queries of the following SQL-like form:
524

525

P
j.
SELECT
lease cite th
jbi.2014.05
COUNT r0 (or r)
526
FROM
 D0 (or D)
527
WHERE
 P is supported by r0 in D0 (or P supports r in D)
528

529

530

531

532

533

534

Algorithm: DISASSOCIATION

Input : Original dataset ,
parameters and

Output : Disassociated dataset

1 Split into disjoint clusters by applying Algorithm HORPART;
2 for every cluster produced do
3 Split vertically into chunks by applying Algorithm VERPART;

4 Refine clusters;
5 return

Fig. 6. DISASSOCIATION algorithm.

Symbol Explanation

Original, anonymized dataset
The set of all diagnosis codes in
Set of utility constraints
The set of all diagnosis codes in
Support of diagnosis code a
Clusters
Domain of cluster
Record chunks
Domain of record chunk
Item chunk
Domain of item chunk

Fig. 7. Notation used in our DISASSOCIATION algorithm and in the algorithms HORPART

and VERPART.
where P0 and P are sets of diagnosis codes, in the anonymized dataset
D0 and in the original dataset D, respectively. These sets retrieve sets
of a fixed number of diagnosis codes. These queries are used by sev-
eral prior works on data anonymization (e.g., [32,58,39,36,35,55]),
and they are important, because they form the basis for more com-
plex queries and various analytic tasks (e.g., frequent itemset mining
and classification). ARE is a standard data utility indicator [36,35,55],
which reflects the average number of transactions that are retrieved
incorrectly as part of query answers. The following definition
explains how ARE can be computed.

Definition 2. LetW be a workload of COUNT queries q1; . . . ; qn, and
CA and CO be functions which count the number of records
answering a query qi; i 2 ½1;n� on the anonymized dataset D0 and on
the original dataset D, respectively. The ARE measure for W is
computed as

AREðWÞ ¼ avg8i2½1;n�
j CAðqiÞ � COðqiÞ j

COðqiÞ

Thus, ARE is computed as the mean error of answering all que-
ries in the query workload W. Clearly, a zero ARE implies that the
anonymized dataset D0 are as useful as the original dataset in
answering the queries in W, and low scores in ARE are preferred.

To capture data utility in the presence of specified utility policies,
we propose a new measure, called Matching Relative Error (MRE).
The computation of MRE is illustrated in the following definition.

Definition 3. Let u be a utility constraint in U, and MA and MO be
functions, which return the number of records that match u in the
anonymized dataset D0 and in the original dataset D, respectively.
The MRE for u is computed as

MREðuÞ ¼ MOðuÞ �MAðuÞ
MOðuÞ

Thus, a zero MRE implies that an anonymized dataset can sup-
port u as well as the original dataset does, and MRE scores close to
is article in press as: Loukides G et al. Disassociation for electronic
.009
zero are preferred. For clarity, we report MRE as a percentage (i.e.,
the percent error). For example, an MRE in the interval ½�5%;5%�
implies that the number of transactions that match the utility con-
straint in the anonymized dataset is no more than 5% different
(larger or smaller) than the corresponding number in the original
dataset.
4. Disassociation algorithm

This section presents our disassociation-based algorithm for
anonymizing diagnosis codes, which is referred to as DISASSOCIATION.
This algorithm performs three operations: (i) horizontal partition-
ing, (ii) vertical partitioning, and (iii) refining. Horizontal partition-
ing brings together similar records with respect to diagnosis
codes into clusters. As will be explained, performing this operation
is important to preserve privacy with low utility loss.
Subsequently, the algorithm performs vertical partitioning. This
operation, which is the heart of our method, disassociates combi-
nations of diagnosis codes that require protection and creates
chunks. DISASSOCIATION differs from the method of [55] in that it aims
at producing data that satisfy utility constraints and hence remain
useful in medical analysis. Specifically, the horizontal and vertical
partitioning phases in our algorithm treat codes that are contained
in utility constraints as first-class citizens, so that they are pre-
served in the published dataset to the largest possible extent. Last,
our algorithm performs the refining operation, to further reduce
information loss and improve the utility of the disassociated data,
A high-level pseudocode of DISASSOCIATION is given in Fig. 6. In addi-
tion, Fig. 7 summarizes the notation used in our algorithm and in
the algorithms that perform its operations.

In the following, we present the details of the horizontal parti-
tioning, vertical partitioning, and refining operations of our
algorithm.

Horizontal partitioning. This operation groups records of the
original dataset D into disjoint clusters, according to the similarity
health record privacy. J Biomed Inform (2014), http://dx.doi.org/10.1016/
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of diagnosis codes. For instance, cluster P1 is formed by records
r1 � r5, which have many codes in common, as can be seen in
Fig. 4. The creation of clusters is performed with a light-weight,
but very effective heuristic, called HORPART. The pseudocode of HOR-

PART is provided in Fig. 8. This heuristic aims at creating coherent
clusters, whose records will require the least possible disassocia-
tion, during vertical partitioning.

To achieve this, the key idea is to split the dataset into two
parts, D1 and D2, according to: (i) the support of diagnosis codes
in D (the support of a diagnosis code a, denoted with sðaÞ, is the
number of records in D in which a appears), and (ii) the participa-
tion of diagnosis codes in the utility policy U. At each step, D1 con-
tains all records with the diagnosis code a, whereas D2 contains the
remaining records. This procedure is applied recursively, to each of
the constructed parts, until they are small enough to become clus-
ters. Diagnosis codes that have been previously used for partition-
ing are recorded in a set ignore and are not used again.

In each recursive call, Algorithm HORPART selects a diagnosis
code a, in lines 3–10. In the first call, a is selected as the most fre-
quent code (i.e., the code with the largest support), which is con-
tained in a utility constraint. At each subsequent call, a is
selected as the most frequent code, among the codes contained
in u (i.e., the utility constraint with the code chosen in the previous
call) (line 4). When all diagnosis codes in u have been considered, a
is selected as the most frequent code in the set fT � ignoreg, which
is also contained in a utility constraint (line 6). Of course, if no
diagnosis code is contained in a utility constraint, we simply select
a as the most frequent diagnosis code (line 9).

Horizontal partitioning reduces the task of anonymizing the
original dataset to the anonymization of small and independent
clusters. We opted for this simple heuristic, because it achieves a
good trade-off between data utility and efficiency, as shown in
our experiments. However, we note that any other algorithm for
creating groups of at least k records could be used instead.

Vertical partitioning. This operation partitions the clusters into
chunks, using a greedy heuristic that is applied to each cluster
independently. The intuition behind the operation of this heuristic,
called VERPARTZ, is twofold. First, the algorithm tries to distribute
infrequent combinations of codes into different chunks to preserve
Fig. 8. HORPART

Please cite this article in press as: Loukides G et al. Disassociation for electronic
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privacy, as in [55]. Second, it aims at satisfying the utility con-
straints, in which the diagnosis codes in the cluster are contained.
To achieve this, the algorithm attempts to create record chunks,
which contain as many diagnosis codes from the same utility con-
straint as possible. Clearly, creating a record chunk that contains all
the diagnosis codes of one or more utility constraints is beneficial,
as tasks involving these codes (e.g., clinical case count studies) can
be performed as accurately as in the original dataset.

The pseudocode of VERPART is provided in Fig. 9. This algorithm
takes as input a cluster P, along with the parameters k and m,
and returns a set of km-anonymous record chunks C1; . . . ;Cv , and
the item chunk CT of P. Given the set of diagnosis codes TP in P, VER-

PART computes the support sðtÞ of every code t in P and moves all
diagnosis codes having lower support than k from TP to a set TT

(lines 2–4). As the remaining codes have support at least k, they
will participate in some record chunk. Next, it orders TP according
to: (i) sðtÞ, and (ii) the participation of the codes in utility con-
straints (line 5). Specifically, the diagnosis codes in P that belong
to the same constraint u in U form groups, which are ordered
two times; first in decreasing sðtÞ, and then in decreasing sðtÞ of
their first (most frequent) diagnosis code.

Subsequently, VERPART computes the sets T1; . . . ; Tv (lines 6–20).
To this end, the set Tremain, which contains the ordered, non-
assigned codes, and the set Tcur , which contains the codes that will
be assigned to the current set, are used. To compute Tið1 6 i 6 vÞ,
VERPART considers all diagnosis codes in Tremain and inserts a code t
into Tcur , only if the Ctest chunk, constructed from Tcur [ ftg, remains
km-anonymous (line 13). Note that the first execution of the for
loop in line 10, will always add t into Tcur , since Ctest ¼ ftg is km-
anonymous. If the insertion of t to Tcur does not render
Tcur [ ftg km-anonymous, t is skipped and the algorithm considers
the next code. While assigning codes from Tremain to Tcur , VERPART

also tracks the utility constraint that each code is contained in (line
14). Next, VERPART iterates over each code t in Tcur and removes it
from Tcur , if two conditions are met: (i) t is contained in a utility
constraint u that is different from the constraint of the first code
assigned to Tcur , and (ii) all codes in u have also been assigned to
Tcur (lines 16–17). Removing t enables the algorithm to insert the
code into another record chunk (along with the remaining codes
algorithm.

health record privacy. J Biomed Inform (2014), http://dx.doi.org/10.1016/
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of u) in a subsequent step. After that, VERPART assigns Tcur to Ti,
removes the diagnosis codes of Tcur from Tremain, and continues to
the next set Tiþ1 (lines 18–20).

Last, the algorithm constructs and returns the set
fC1; . . . ;Cv ; CTg (lines 21–23). This set consists of the record chunks
C1; . . . ;Cv , and the item chunk CT , which are created in lines 21 and
22, respectively.

In the following, we clarify the intuition behind lines 15–17.
When VERPART starts creating a chunk in lines 10–14, it uses codes
that may belong to different constraints. This aims at reducing the
total number of record chunks in each cluster, by assigning as
many codes as possible to a chunk (even from different con-
straints). Recall that the more record chunks we have in each clus-
ter, the more disassociated the resulting dataset will be, and this is
something we should avoid.

Thus, when codes from more than one utility constraint can be
added into the same chunk, then there is no need to split them and
create one chunk per constraint. Consider, for example, that VER-

PART created a chunk in lines 10–14, and that the codes in the
chunk appear in two different utility constraints u1 and u2. With-
out loss of generality, we assume that the codes of u1 are inserted
into the chunk before those of u2. The fact that all codes of the
same constraint will be checked before the codes of a different con-
straint is ensured, by the sorting in line 5 of VERPART. Since codes of
u1 are inserted into the cluster first, we know that, if a code of u1

was not inserted at that point, then this is because it breaks the
Please cite this article in press as: Loukides G et al. Disassociation for electronic
j.jbi.2014.05.009
km-anonymity guarantee, due to a combination with codes of the
same constraint, i.e., u1. Hence, there is nothing better to be done,
for the set of codes of u1, in this case. However, for the remaining
codes of u2, the situation requires a different treatment. If there is a
code of u2 that was not included in the chunk, then this may have
happened because the km-anonymity was violated by a combina-
tion of this code and a code of u1. Still, it may be possible that all
codes of u2 can be included in another chunk of the cluster, without
violating the privacy guarantee. For this reason, the algorithm
removes all codes of u2 that were inserted in the chunk of the cur-
rent step (lines 15–17) and tries to include all of them together
(along with the previously excluded code) into a subsequent chunk
of the cluster. In any case, the maximum set of codes from u2 that
does not violate the km-anonymity is guaranteed to be added into a
chunk, when the algorithm considers this set first in the creation of
a chunk, as in the case of codes from u1 we described before.

Refining. This operation focuses on further improving the util-
ity of the disassociated dataset, while maintaining Guarantee 1. To
this end, we examine the diagnosis codes that reside in the item
chunk of each cluster. Consider, for example, Fig. 4. The item chunk
of the cluster P1 contains the diagnosis codes 834:0 and 944:01,
because the support of these codes in P1 is 2 (i.e., lower than
k ¼ 3). For similar reasons, these diagnosis codes are also con-
tained in the item chunk of P2. However, the support of these codes
in both clusters P1 and P2 together is not small enough to violate
privacy (i.e., the combination of 834:0 and 944:01 appears as many
health record privacy. J Biomed Inform (2014), http://dx.doi.org/10.1016/
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times as the one of 296:03 and 294:10 which is in the record chunk
of P2).

To handle such situations, we introduce the notion of joint clus-
ters by allowing different clusters to have common record chunks.
Given a set Ts of refining codes (e.g., 834:0 and 944:01 in the afore-
mentioned example), which commonly appear in the item chunks
of two or more clusters (e.g., P1 and P2), we can define a joint clus-
ter by (i) constructing one or more shared chunks after projecting
the original records of the initial clusters to Ts and (ii) removing
all diagnosis codes in Ts from the item chunks of the initial clusters.
Fig. 10 shows a joint cluster, created by combining the clusters P1

and P2 of Fig. 4, when Ts ¼ f834:0; 944:01g.
Furthermore, large joint clusters can be built by combining

smaller joint clusters. Note that the creation of shared chunks is
performed similarly to the method of [55], but shared chunks are
created by our VERPART algorithm, which also takes into account
the utility constraints.

We now provide an analysis of the time complexity of our
algorithm.

Time complexity. We first consider each operation of DISASSOCI-

ATION separately. The worst-case time complexity of the horizontal

partitioning operation is Oðj Dj2Þ. This is because HORPART works
similarly to the Quicksort algorithm, but instead of a pivot, it splits
each partition by selecting the code a. Thus, in the worst case, HOR-

PART performs j D j splits and at each of them it re-orders j D j
records. The time complexity of vertical partitioning depends on
the domain TP of the input cluster P, and not on the characteristics
of the complete dataset. The most expensive operation of VERPART is
to ensure that a chunk is km-anonymous, which requires examin-

ing j TP j
m

� �
combinations of diagnosis codes. Thus, VERPART takes

Oðj TP j !Þ time, where TP is small in practice, as we regulate the size
of the clusters. Last, the complexity of the refining operation is

Oðj Dj2Þ. This is because, in the worst case, the number of passes
over the clusters equals the number of the clusters in D. Thus,
the behavior of DISASSOCIATION is dominated by that of HORPART, as
the dataset size grows. Note that this analysis refers to a worst-
case. In practice, our algorithm is as efficient as the method in
[55], although it takes into account utility constraints.
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5. Example of disassociation

This section presents a concrete example of applying DISASSOCIA-

TION to the dataset D of Fig. 1. The input parameters are k ¼ 3 and
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4 This parameter could be set to any value at least equal to the value of k. However,
it is fixed to 2 � k, because we have observed that this leads to producing good clusters.
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m ¼ 2, and that the maxClusterSize parameter of HORPART is set to 6.4

Horizontal partitioning. First, DISASSOCIATION performs the hori-
zontal partitioning operation on the original dataset D, using the
HORPART algorithm. The algorithm selects 296:00, which participates
in constraint u1 of Fig. 3(b) and has the largest support. It then
splits D into two parts, D1 and D2. D1 consists of the records con-
taining 296:00 (i.e., r1 � r5), whereas D2 contains the remaining
records r6 � r10. At this point, 296:00 is moved from the domain T
of D1 into the set ignore, so that it will not be used in subsequent
splits of D1. Moreover, the next call of HORPART for D1 (line 13) is
performed with the utility constraint u1 as input. Thus, HORPART

tries to further partition D1, using the codes of this constraint. On
the contrary, an empty ignore set and no utility constraint are given
as input to HORPART, when it is applied to D2. As the size of both D1

and D2 is lower than maxClusterSize (condition in line 2 of 8), HOR-

PART produces the dataset in Fig. 11. This dataset is comprised of
the clusters P1 and P2, which amount to D1 and D2, respectively.

Vertical partitioning. Then, DISASSOCIATION performs vertical par-
titioning operation, by applying VERPART to each of the clusters P1

and P2. The latter algorithm computes the support of each code
in P1, and then moves 401:0; 834:0 and 944:01, from the cluster
domain TP into the set TT (line 4 in VERPART). The codes are moved
to TT , which corresponds to the domain of the item chunk, because
they have a lower support than k ¼ 3. Thus, TP now contains
f296:00; 296:01; 296:02; 692:71; 695:10g, and it is sorted according to
the support of these codes in P1 and their participation in a utility
constraint of U. Specifically, for the utility constraints of Fig. 3(b),
we distinguish two groups of codes in TP; a group
f296:00; 296:01; 296:02g, which contains the codes in u1, and another
group f692:71; 695:10g with the codes in u2. Next, VERPART sorts the
first group in descending order of the support of its codes. Thus,
296:00 is placed first and followed by 296:01 and 296:02. The second
group is sorted similarly. After that, the two groups are sorted in
descending order of the support of their first code. Thus, the final
ordering of TP is f296:00; 296:01; 296:02; 692:71; 695:10g.

Subsequently, VERPART constructs the record chunks of P1 (lines
10–14), as follows. First, it selects 296:00 and checks whether the
set of projections of the records r1-r5 on this code is 32-anonymous.
This holds, as 296:00 appears in all records of P1. Thus, VERPART places
296:00 into the set Tcur , which will later be used to define the record
chunk C1. Then, the algorithm selects 296:01 and checks whether the
projections of all records r1 � r5 on f296:00; 296:01g are also 32-
anonymous. As this is true, 296:01 is moved to Tcur , and the same
procedure is performed, for each of the codes 296:02; 692:71, and
695:10. When the projections of the records r1 � r5 are found to be
32-anonymous, the corresponding code is added to Tcur . Otherwise,
it is left in a set Tremain to be used in a subsequent step. Notice that
296:02 and 692:71 are added into Tcur , but the code 695:10 is not. This
is because the combination of codes 296:01 and 695:10 appears in
health record privacy. J Biomed Inform (2014), http://dx.doi.org/10.1016/
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Table 1
Description of the dataset.

Dataset j D j Distinct codes Max, Avg # codes/record

INFORMS 58,302 631 43, 5.11
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only two records of P1 (i.e., r2 and r5), hence, the projections of
records r1 � r5 on f296:00; 296:01; 296:02; 692:71; 695:10g are not 32-
anonymous.

After considering all codes in TP , VERPART checks whether the
codes of a constraint u 2 U are only partially added to Tcur . This is
true for 692:71, which is separated from 695:10 of the same constraint
u2. Hence, 692:71 is moved from Tcur back to Tremain (line 17), so that it
can be added to the chunk C2 of P1 along with 695:10. After that, the
algorithm finalizes the chunk C1, according to Tcur , empties the latter
set, and proceeds to creating C2. By following this procedure for the
cluster P2, VERPART constructs the dataset DA in Fig. 4.

Refining. During this operation, DISASSOCIATION constructs the
shared chunks, which are shown in Fig. 10, as follows. It inspects
the item chunks of P1 and P2 in Fig. 4, and it identifies that each
of the codes 834:0 and 944:01 appears in two records of P1, as well
as in two records of P2. Note that the actual supports of codes in
item chunks are available to the algorithm after the vertical parti-
tioning operation, although they are not evident from Fig. 4
(because they are completely hidden in the published dataset).
Since the total support of 834:0 and 944:01 in both clusters is
2þ 2 ¼ 4 > k ¼ 3, the algorithm reconstructs the projections of
r1 � r5 and r6 � r10 on the item chunk domain of P1 and P2 respec-
tively, and calls VERPART, which creates the shared chunk of Fig. 10.
840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

5 Sections and Chapters are internal nodes in the ICD hierarchy, which model
aggregate concepts http://www.cdc.gov/nchs/data/icd9/icdguide10.pdf.
6. Experimental evaluation

6.1. Experimental data and setup

We implemented all algorithms in C++ and applied them to the
INFORMS dataset [8], whose characteristics are shown in Table 1.
This dataset was used in INFORMS 2008 Data Mining contest,
whose objective was to develop predictive methods for identifying
high-risk patients, admitted for elective surgery. In our experi-
ments, we retained the diagnosis code part of patient records only.

We evaluated the effectiveness of our DISASSOCIATION algorithm,
referred to as Dis, by comparing to CBA, which employs generaliza-
tion to prevent identity disclosure based on diagnosis codes. The
default parameters were k ¼ 5 and m ¼ 2, and the hierarchies used
in CBA were created as in [35]. All experiments ran on an Intel Xeon
at 2.4 GHz with 12 GB of RAM.

To evaluate data utility, we employed the ARE and MRE mea-
sures, discussed in Section 3.3. For the computation of ARE, we
used two different types of query workloads. The first workload
type, referred to as W1, contains queries asking for sets of
Please cite this article in press as: Loukides G et al. Disassociation for electronic
j.jbi.2014.05.009
diagnosis codes that a certain percentage of all patients have. In
other words, these queries retrieve frequent itemsets (i.e., sets of
diagnosis codes that appear in at least a specified percentage of
records (transactions), expressed using a minimum support thresh-
old). Answering such queries accurately is crucial in various bio-
medical data analysis applications [35], since frequent itemsets
serve as building blocks in several data mining models [32]. The
second workload type we considered is referred to asW2 and con-
tains 1000 queries, which retrieve sets of diagnosis codes, selected
uniformly at random. These queries are important, because it may
be difficult for data owners to predict many of the analytic tasks
that will be applied to anonymized data by data recipients.

In addition, we evaluated MRE using three classes of utility pol-
icies: hierarchy-based, similarity-based, and frequency-based. The
first two types of policies have been introduced in [35] and model
semantic relationships between diagnosis codes. For hierarchy-
based policies, these relationships are formed using the ICD hierar-
chy. Specifically, hierarchy-based utility policies are constructed by
forming a different utility constraint for all 5-digit ICD codes that
have a common ancestor (other than the root) in the ICD hierarchy.
The common ancestor of these codes is a 3-digit ICD code, Section,
or Chapter,5 for the case of level 1, level 2, and level 3 hierarchy-based
policies, respectively. For example, consider a utility constraint u for
Schizophrenic disorders. The 5-digit ICD codes in u are of the form
295:xy, where x ¼ f0; . . . ;9g and y ¼ f0; . . . ;5g, and they have the
3-digit ICD code 295 as their common ancestor. The utility constraint
u is shown in the first row of Table 2. By forming a different utility
constraint, for each 3-digit ICD code in the hierarchy (e.g., 296,
297, etc.), we construct a level 1, hierarchy-based policy. Alterna-
tively, the common ancestor of the codes in the utility constraint u
may be a Section. For example, u is comprised of Psychoses, whose
common ancestor is 295� 299, in the second row of Table 2. In this
case, u will be contained in a level 2, hierarchy-based policy. In
another case, the common ancestor for the codes in u may be a Chap-
ter. For example, u may correspond to Mental disorders that have
290� 319 as their common ancestor (see the last row of Table 2).
In this case, u is contained in a level 3, hierarchy-based policy.

The similarity-based utility policies are comprised from utility
constraints that contain the same number of sibling 5-digit ICD
codes in the hierarchy. Specifically, we considered similarity-based
constraints containing 5, 10, 25, and 100 codes and refer to their
associated utility policies as sim 5, 10, 25, and 100, respectively.
Consider, for instance, a utility constraint that contains 5 sibling
ICD codes; 295.00, 295.01, 295.02, 295.03, and 295.04. This con-
straint, as well as all other constraints that contain 5 sibling ICD
codes (e.g., a utility constraint that contains 296.00, . . ., 296.04),
will be contained in a sim 5 utility policy. Last, we considered fre-
quency-based utility policies that model frequent itemsets. We
mined frequent itemsets using the FP-Growth algorithm [27],
which was configured with a varying minimum support threshold
in f0:625;1:25;2:5;5g. Thus, the generated utility constraints
contain sets of diagnosis codes that appear in at least
0:625%;1:25%;2:5%, and 5% percent of records, respectively. The
utility policies associated with such constraints are denoted with
sup 0.625, 1.25, 2.5, and 5, respectively. Unless otherwise stated,
we use level 1, sim 10, and sup 0.625, as the default hierarchy, sim-
ilarity, and frequency based utility policy, respectively.
6.2. Feasibility of identity disclosure

The risk of performing identity disclosure was quantified by
measuring the number of records that share a set of m diagnosis
health record privacy. J Biomed Inform (2014), http://dx.doi.org/10.1016/
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Examples of hierarchy-based utility constraints.

Type Codes in utility constraint

level 1 f295:00;295:01; . . . ;295:95g
level 2 f295:00;295:01; . . . ;295:95;296:00; . . . ;299:91g
level 3 f290:10;295:00;295:01; . . . ;295:95;296:00; . . . ;299:91; . . . ;299:91;

. . . ;319g
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codes. This number equals the inverse of the probability of per-
forming identity disclosure, using these codes. Fig. 12 shows that
more than 17% of all sets of 2 diagnosis codes appear in one record.
Consequently, more than 17% of patients are uniquely re-identifi-
able, if the dataset is released intact. Furthermore, fewer than 5%
of records contain a diagnosis code that appears at least 5 times.
Thus, approximately 95% of records are unsafe, based on the prob-
ability threshold of 0:2 that is used typically [19]. Moreover, the
number of times a set of diagnosis codes appears in the dataset
increases with m. For example, 96% of sets containing 5 diagnosis
codes appear only once. As we will see shortly, our algorithm can
thwart attackers with such knowledge, by enforcing km-anonymity
with m ¼ 5, while preserving data utility.

6.3. Comparison with CBA

In this set of experiments, we demonstrate that our method can
enforce km-anonymity, while allowing more accurate query
answering than CBA. We also examine the impact of dataset size
on the effectiveness and efficiency of both methods.

We first report ARE for query workloads of typeW1 and for the
following utility policies: level 1 (hierarchy-based), sim 10 (similar-
ity-based), and sup 1.25 (frequency-based). For a fair comparison,
the diagnosis codes retrieved by all queries are among those that
are not suppressed by CBA. Fig. 13(a) illustrates the results for
the level 1 policy. On average, the ARE scores for Dis and CBA are
0.055 and 0.155, respectively. This shows that the use of disassoci-
ation instead of generalization allows enforcing km-anonymity
with low information loss. Figs. 13(b) and (c) show the correspond-
ing results for the similarity-based and frequency-based policies,
respectively. Again, our method outperformed CBA, achieving ARE
scores that are substantially lower (better). Of note, the difference
between the ARE scores for Dis and CBA, in each of the experiments
in Figs. 13(a)–(c), was found to be statistically significant, accord-
ing to Welch’s t-test ðp < 0:01Þ. It is also worth noting that the dif-
ference of Dis and CBA with respect to ARE, increases as the utility
policies get less stringent. For instance, the ARE scores for Dis and
CBA are 0.129 and 0.163, respectively, for level 1, hierarchy-based
policies, but 0.006 and 0.1, respectively, for level 3, hierarchy-based
policies. This suggests that both algorithms perform reasonably
Please cite this article in press as: Loukides G et al. Disassociation for electronic
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well with respect to query answering, for restrictive constraints.
However, CBA does so by suppressing a large number of diagnosis
codes, as will be discussed later. Thus, the result of CBA is generally
of lower utility (e.g., it does not allow queries on suppressed codes
to be answered). Quantitatively similar results were obtained for
query workloads of type W2 (omitted, for brevity).

Next, we report the number of distinct diagnosis codes that are
suppressed when k is set to 5, m is 2 or 3, and the utility policies of
the previous experiment are used. The results in Fig. 14 show that
CBA suppressed a relatively large number of diagnosis codes, par-
ticularly when strong privacy is required and the utility constraints
are stringent. For instance, 23:6% (i.e., 149 out of 631) of distinct
diagnoses codes were suppressed, when m ¼ 3 and the level 1 util-
ity policy was used. On the contrary, our method released all diag-
noses codes intact, as it does not employ suppression. This is
particularly useful for medical studies (e.g., in epidemiology),
where a large number of codes are of interest.

Then, we examined the effect of dataset size on ARE, by apply-
ing Dis and CBA on increasingly larger subsets of the dataset. The
smallest and largest of these subsets contain the first 2:5K and
25K records of the dataset, respectively. In addition, we used query
workloads of typeW2 and the sup 1.25 utility policy. The results in
Fig. 15(a) show that both algorithms incurred more information
loss to anonymize smaller datasets. This is expected, because all
datasets contain at least 79% of the diagnosis codes of the entire
dataset, and many sets of diagnosis codes have a lower support
than k. The ARE scores for Dis were always low, and substantially
lower than those for CBA, for smaller datasets. For example, for
the smallest dataset, the ARE scores for Dis and CBA were 0.95
and 11.57. The difference between the ARE scores for Dis and
CBA, in all the results in Fig. 15(a), was found to be statistically sig-
nificant, according to Welch’s t-test ðp < 0:01Þ. Furthermore, as
shown in Fig. 15(b), CBA suppressed a relatively large percentage
of diagnosis codes, which decreased as the dataset size grows, for
the reason explained before.

Last, we compared the runtime of Dis to that of CBA. We used
the same parameters as in Fig. 15(b), and report the results in
Fig. 15(c). As can be seen, both algorithms required less than 5 s.
However, Dis is more efficient than CBA, and the performance gain
increases with the dataset size. Specifically, Dis needed 1.2 s to
anonymize the largest dataset, while Dis needed 4.9 s. In addition,
the computation cost of Dis remained sub-quadratic, for all tested
datasets.

Having established that our method outperforms CBA, we do
not include results for CBA in the remainder of the section.

6.4. Supporting clinical case count studies

In the following, we demonstrate the effectiveness of our
method at producing data that support clinical case count studies.

Fig. 16(a) illustrates the results for all three hierarchy-based
policies and for query workloads of type W2. These workloads
require retrieving a randomly selected set of 1 to 4 diagnosis codes.
For consistency, we add a random code to a set of c diagnosis codes
to produce a larger set of c þ 1 codes. For instance, a random code
is added to a set of 1 diagnosis code to obtain a set containing 2
diagnosis codes. Observe that the error in query answering is fairly
small and increases with the size of sets of diagnosis codes. This is
because larger sets appear in few records and are more difficult to
be made km-anonymous. Furthermore, low ARE scores are
achieved, even for the level 1 utility policy, which is difficult to sat-
isfy using generalization. Similar observations can be made for
other types of constraints, as can be seen in Figs. 16(b) and (c).

Fig. 17(a) shows the results, for hierarchy-based constraints and
query workloads of typeW1. The corresponding results for similar-
ity-based and frequency-based constraints are reported in Figs.
health record privacy. J Biomed Inform (2014), http://dx.doi.org/10.1016/
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17(b) and (c), respectively. Note that ARE scores are very low. In
addition, queries involving more frequent sets of diagnosis codes
can be answered highly accurately.

Next, we examined the impact of k on ARE, by varying this
parameter in ½5;25�, and considering the level 1, sim 10, and sup
(a)
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2.5 utility policies. As can be seen in Fig. 18, ARE increases with k,
as it is more difficult to retain associations between diagnosis codes,
when clusters are large. However, the ARE scores are low, which
indicates that our method permits accurate query answering.
6.5. Effectiveness in medical analytic tasks

In this set of experiments, we evaluate our method in terms of
its effectiveness at supporting different utility policies. Given a
utility policy, we measure MRE, for all constraints in the policy,
and report the percentage of constraints, whose MRE falls into a
certain interval. Recall from Section 6.1 that intervals whose end-
points are close to zero are preferred.

Fig. 19 reports the results, for the level 1 utility policy. The MRE
of all constraints in this policy is in ½�24%;5%Þ, while the MRE of
the vast majority of constraints falls into much narrower intervals.
Furthermore, the percentage of constraints with an MRE score
close to zero is generally higher compared to those with MRE is
far from zero. This confirms that the data produced by our method
(b)

10K 25K

s in dataset
(c)

tinct codes that are suppressed by CBA, and (c) efficiency.
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can support the intended analytic tasks, in addition to permitting
accurate query answering.

Next, we performed a similar experiment for similarity-based
and frequency-based utility policies. The results for the sim 5 policy
are shown in Fig. 20. Note that 81% and 90% of the utility
constraints in this policy have an MRE in ½�2:5%;2:5%� and in
Please cite this article in press as: Loukides G et al. Disassociation for electronic
j.jbi.2014.05.009
½�5%;5%Þ, respectively and only 3:6% of them have an MRE in
½�21%;�10%Þ. The results for the sup 0.625 utility policy are quan-
titatively similar, as can be seen in Fig. 21. These results together
with those in Figs. 19 and 20 demonstrate the effectiveness of
our method at supporting utility policies.

In addition, we examined the impact of k on MRE, for different
classes of utility policies. Figs. 22–24 illustrate the results for hier-
archy-based, similarity-based, and frequency-based policies,
health record privacy. J Biomed Inform (2014), http://dx.doi.org/10.1016/
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respectively. It can be seen that, lowering k, helps the production of
data that support the specified utility policies. For instance, 95:3%

of hierarchy-based constraints have an MRE in ½�5%;5%Þ when
k ¼ 2, but 53% of such constraints have an MRE in this interval
when k ¼ 25. This is expected due to the utility/privacy trade-off.
However, the MRE of most of the constraints falls into ½�5%;5%Þ.
Thus, our method is effective at supporting the intended medical
analytic tasks.

Last, we investigated the effectiveness of our method, when
m ¼ 5. It is interesting to examine data utility in this setting,
because a patient’s record in discharge summaries, which may be
Please cite this article in press as: Loukides G et al. Disassociation for electronic
j.jbi.2014.05.009
used in identity disclosure attacks, often contains 5 diagnosis
codes, which are assigned during a single hospital visit. Thus,
enforcing k5-anonymity provides protection from such attacks,
assuming a worst case scenario in which data owners do not know
which diagnoses codes may be used by attackers. In our experi-
ments, we considered different classes of utility policies (namely,
level 1, sim 10, and sup 2.5) and report the results in Fig. 25. Notice
that the data produced by our method remain useful for supporting
the utility policies, as 89%;93%, and 100% of the tested hierarchy-
based, similarity-based, and frequency-based constraints have an
MRE in ½�5%;5%Þ, respectively.
health record privacy. J Biomed Inform (2014), http://dx.doi.org/10.1016/
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7. Discussion

This section explains how our approach can be extended to deal
with different types of medical data and privacy requirements. In
addition, it discusses the limitations of our approach, which sug-
gest opportunities for further research.
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7.1. Dealing with data containing repeated diagnosis codes

Our work considers records comprised of a set of diagnosis
codes, following [34,36,35]. However, some applications that aim
at identifying phenotypes in the context of genetic association
studies require data, in which a record contains repeated diagnosis
codes (i.e., a multiset of diagnosis codes). Dealing with these appli-
cations is straightforward, as it requires a pre-processing in which
different instances of the same diagnosis code in the dataset, and
the utility constraints, are mapped to different values (e.g., the first
occurrence of 250.01 is mapped to 250.011, the second to 250.012
etc.) [35].
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7.2. Dealing with different privacy requirements

Our work focuses on preventing identity disclosure which is the
most important privacy requirement in the healthcare domain. It
ensures that an attacker with background knowledge of up to m
codes in a record cannot associate this record with fewer than k
candidate patients. However, the anonymization framework we
propose is not restricted to guarding against attackers with only
partial knowledge of the codes in a record in D. In fact, by setting
m to the maximum number of codes in a record of D, data owners
can prevent attacks based on knowledge of all codes in a record.
This is because the dataset that is produced by our method in this
case satisfies Guarantee 1. Regardless of the specific values of k and
m, we do not consider collaborative attacks, where two or more
attackers combine their knowledge in order to re-identify a patient
nor attackers with background knowledge of multiple records in D.
Such powerful attack schemes can only be handled within stronger
privacy principles, such as differential privacy (see Section 2).
However, applying these principles usually results in significantly
lower utility, compared to the output of our method, which offers
a reasonable tradeoff.

Furthermore, we do not assume any distinction between sen-
sitive and non-sensitive diagnosis codes (see Section 3). Instead,
we treat all codes as potentially identifying. However, when
there is clear distinction between sensitive and non-sensitive
codes in a record, i.e., data owners know that some codes (the
sensitive ones) are not known to any attacker, then our frame-
work allows thwarting attribute disclosure as well. An effective
principle for preventing attribute disclosure is ‘-diversity [41].
Enforcing ‘-diversity using our framework is rather straightfor-
ward, as it simply requires (i) ignoring all sensitive codes during
the horizontal partitioning operation, and (ii) placing all sensitive
codes in the item chunk during vertical partitioning. This pro-
duces a dataset DA, in which all sensitive codes are contained in
the item chunks. This dataset limits the probability of any asso-
ciation between sensitive codes and any other subrecord or code
to 1

jPj, where j P j is the size of the cluster. Clearly, the desired
degree of ‘-diversity can be achieved in this case, by adjusting
the size of the clusters.

In general, protection from attribute disclosure within our
framework tends to incur higher information loss than simply
protecting from identity disclosure. This is because sensitive
codes are not necessarily infrequent, i.e., they may appear more
than k times in a cluster. Thus, the frequent sensitive codes that
would be placed in a km-anonymous record chunk, when only
Please cite this article in press as: Loukides G et al. Disassociation for electronic
j.jbi.2014.05.009
identity disclosure is prevented, are now placed in the item
chunk and each of them is completely disassociated from any
other. In this case, the utility constraints that include sensitive
codes are not preserved in the published dataset to the extent
they would be preserved when only guarding against identity
disclosure is required. Of course, this does not hold for the
remaining utility constraints. The evaluation of our method with
protection from both identity and attribute disclosure is left as
future work.
7.3. Limitations

The proposed approach is limited in three main aspects. First, it
considers data containing diagnosis codes. Some applications,
however, require releasing data that contains both diagnosis codes
and demographics. Anonymizing such data has been considered
very recently by Poulis et al. [50] and by Mohammed et al. [47].
The method in [50] employs generalization and is not directly
applicable to publishing patient information, while the method in
[47] employs differential privacy and releases noisy summary sta-
tistics. Extending our approach, so that it can deal with such data is
interesting but very challenging. This is because: (i) minimizing
the information loss for both demographics and diagnosis codes
is computationally infeasible, and (ii) existing optimization strate-
gies do not achieve a ‘‘good’’ trade-off between the information
loss in these two attribute types. For example, as proved in [50],
to construct a dataset with the minimum information loss in
demographics, we need to apply generalization to ‘‘small’’ groups
of records independently, but we must apply generalization to all
records in the dataset, to minimize information loss in diagnosis
codes. The reason is that demographics and diagnosis codes have
different semantics; a patient is associated with a fixed, typically
small, number of demographics, but with a large number of diag-
nosis codes, that is not the same for all patients.

Second, as is true of all data anonymization methods, our
approach assumes that data owners are able to select appropriate
values for k and m. Configuring these parameters to find the ‘‘best’’
trade-off between data utility and privacy is, however, not
straightforward. For example, if the dataset is ‘‘too’’ small and con-
tains a ‘‘large’’ number of ‘‘rare’’ diagnosis codes, applying km-ano-
nymity with ‘‘large’’ k and m values may incur high information
loss. It is therefore important to develop tools that help data own-
ers in assessing data utility and privacy, so as to achieve a ‘‘good’’
utility/privacy trade-off.

Third, although our approach improves upon existing work in
terms of minimizing information loss, it does not guarantee that
the information loss will be bounded from the optimal. The design
of approximation algorithms that offer such guarantees is an
important open problem, which is challenging due to its computa-
tional hardness [37].
8. Conclusions

Ensuring that diagnosis codes cannot be used in identity disclo-
sure attacks is necessary but challenging, particularly when data
need to be shared broadly and to support a range of medical ana-
lytic tasks that may not be determined prior to data dissemination.
To this end, we proposed a novel, disassociation-based approach
that enforces km-anonymity with low information loss. Our
approach does not require data owners to specify diagnosis codes,
as existing methods do, and takes into account analytic tasks that
published data are intended for. Extensive experiments using EHR
data show that our approach can produce data that permit various
types of clinical case count studies and general medical analysis
tasks to be performed accurately.
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