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Anonymizing Collections of
Tree-Structured Data

Olga Gkountouna, Student Member, IEEE, and Manolis Terrovitis

Abstract NCollections of real-world data usually have implicit or explicit structural relations. For example, databases link records
through foreign keys, and XML documents express associations between different values through syntax. Privacy preservation,
until now, has focused either on data with a very simple structure, e.g. relational tables, or on data with very complex structure
e.g. social network graphs, but has ignored intermediate cases, which are the most frequent in practice. In this work, we focus
on tree structured data. Such data stem from various applications, even when the structure is not directly reected in the syntax,
e.g. XML documents. A characteristic case is a database where information about a single person is scattered amongst different
tables that are associated through foreign keys. The paper debnesk(™" ) -anonymity, which provides protection against identity
disclosure and proposes a greedy anonymization heuristic that is able to sanitize large datasets. The algorithm and the quality
of the anonymization are evaluated experimentally.

Index Terms Nprivacy, tree data, anonymity, structural knowledge, generalization, disassociation.
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1 INTRODUCTION but also on the simplipcation of the data tree.

As personal information is collected in increasingly detailed €Onsider the medical records of Fig. 1. The depicted

level by companies and organizations, privacy related cof€eS at the top represent two medical records. Each tree

cerns are posing signibcant challenges to the data mgﬁanch describes a health related incident. The brst level af-

agement community. Data anonymization techniques halgg root holds information about the hospital where a client
been proposed in order to allow processing of person¥RS admltt_ed. Th_e children nodes of the hospital nodes
data without compromising userOs privacy. NevertheleS80W the diagnosis. An attacker who knows that a person

practical problems like dependencies between values *fp Suffered from OGastritisO and thatwas admitted to
(HospitalO cannot distinguish between the two trees. If the

personal records do not have a satisfying solution. In th R oo
paper, we focus on the anonymization of tree-structur@ifacker also knows that was treated for OGastritisd

personal records where values are linked through structuflospitalo, then he can be certain that the top left record
links. is the medical record oX . To prevent attackers who have

Personal information rarely comprises just a single tupf¥!ch background knowledge from associating records to
in modern information systems. The information concerifdividuals we provide an anonymization method that offers

ing a single individual usually spans over several tables Orqfotectlon against identity disclosure. We focus on identity

is kept in a more Rexible representation as an XML recorg!sclosure for three main reasons: a) in many practical

Such tree structured data cannot be anonymized effectivéRSes there are strict utility requirements that cannot be
with table based anonymization methods since the structuf&¢t When more powerful guaranties are applied, b) there is
relation between different belds substantially differentiat@§tén inability to characterize attributes as sensitive or non-
the problem. The problem of anonymizing tree structurexEnsitive and c) the privacy protection law in most countries
data has only been addressed in existing research literate/@lly focuses on identity [4], [3], [3], [2], [1].
in the context of multirelationak-anonymity [35]. In The paper proposdd™ " -anonymity, which guarantees
our approach we consider a more general case for tfdgt an attacker who knows up to elements of a record
structured data and we propose an anonymization mettfJif ton structural relationsbetween them elements will
that does not rely solely on the generalization of value@0t be able to match her background knowledge to less
than k matching records in the anonymized data. The
¥ Olga Gkountouna is with the Department of Electrical and Compute@nonyml_z‘?mon procedyre does DOt 'only generahzg vglues
Engineering, NTUA, Greece. E-mail: olga@dblab.ece.ntua.gr that participate in rare item combinations but also simplibes
Her research has been co-bPnanced by the European Union (Europetfre structure of the records. The simplibcation is performed

Social Fund) and Greek national funds through the Operational Pro; : ;
gram OEducation and Lifelong LearningO of the National Strategic R y removing nodes from long paths and (,:reatmg new
erence Framework (NSRF) - Research Funding Program: Heracleitf@maller paths. Returning to the example of Fig. 1, we can

Il. Investing in knowledge society through the European Social Fund&nsure that both records will be indistinguishable to an

¥ Manolis Terrovitis is with the Institute of the Management of Informas. : ~ RIS
tion Systems, Athens, Greece. E-mail: mter@imis.athena—innovaltion.'_gglF.ta‘Cker who knows that a patient was treated for OGastritisO

His work is supported by the EU/Greece funded KRIPIS Action: MEDK OHospitalO, by placing OGastritisO as a sibling to the
Project. hospital (as shown in the two trees in lower part of Fig.

1). By examining these records, an attacker can infer that
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trees All records follow a common schema that debnes
the class of each node, e.g. the element in the case of
XML. Each classA has a domainh 4, domains of different
classes are mutually exclusive;, (1 a4, = Vfori=j.

The union of all class domains is. A path from the
root to the leaves cannot have more than one nodes of the
same class. The schema of the trees debnes a partial order
for the node classes. Following a path from the root, we
progressively meet nodes of larger class, i.e., a diass
larger thanA if we meet values of clasB after values of
classA. The ordering of classes is arbitrary and it is debned

both these patients were treated for OGastritisO and Byathe publisher. The intuition between the ordering is to
they have both been to OHospi@land OHospis&). The avoid logical discrepancies in the structure of the tree; if
information that one patient was treated for gastritis ifecords include paths in the form of OHosgitalisease
the particular hospital is hidden, so the attacker can foTreatmentO, as in Fig. 1, then there will be no records
longer distinguish between the two records based on hihere the information will appear in different order, e.g.,
background knowledge. ODiseask Hospita## TreatmentO.

We propose two anonymization algorithms in this direc- The proposed anonymization methods address datasets
tion. Our PrstAl ICutSearch (ACS) algorithm explores like D. The original data owned by the publisher might be
in a top-down fashion the lattice of all possible combiin a different form, e.g., a multirelational schema, but it has
nations of value generalizations, and for each differef@ be transformed to a dataset with the structuréofor
generalization it explores the possible structural transformf#e anonymization procedure. Richer information schemas
tions, and Pnds a solution that satisi&$™ -anonymity. €.9., graphs, references from one tree to another, are not
Because of the large solution spa&€S cannot scale to addressed and can lead to privacy breaches.
large collections of data and thus we propose a more
aggressive greedy heuristi&{S) which prunes the solution 2 5 Attack model.

rch- lecting on-the- he m romisi . .
search-space by selecting on-the-Ry the most promis consider attackers who have partial knowledge about a

candidate solutions. Our experimental evaluation shows t . . . .
GCS scales well with the size of the dataset, and bndsPg >0 €. they know a part of the information that exists

solution very close to the one found BES in most tested Ln hgr rﬁcort?], and th?ytwant to dugr(ﬁaJthl\/svpartlaI knov;/:]ec:ge
cases. Our main contributions include the following: 0 identify the complete record . We assume tha

We debne th bl f o a({l attacker has only positive knowledge about values and
¥ We debne the problem of anonymizing tree Structure@y | relations for any user record. We do not consider

data and we explain in detail how the record SUUCtUIG ackers who have negative knowledge i.e., the fact that a

3\7 n dac; as tﬁ ‘g(lfna:)'"dent'pe.ri . ; q user isnot associatedvith a certain value. We consider only
¥ Ve debne -anonymityprivacy guarantee and ., ir,ctural relation: the relation ahcestor-descendant

explain how it is efpcient in concrete attack scenarioE‘We denote thab is a descendant od asa ~ b), i.e

v We |nt.roduce.a. novell date} trqnsformahoetruc- the attacker might know that two nodes appear in the
tural disassociation which simplibes the structure (o o path. Finally, we assume that attackers can have
of the records and provides more Rexibility o they oqrg) knowledge only about nodes whose values are

anonymization procedure. L ) known to them: if an attacker knowsn values of a record
¥ We propose a novel anonymization algorithm andrg/
n

inf tion | ic that takes int 1,---,Vim}, her structural knowledge would be a set of
new nformation 10Ss Metric a. a _es INto acCourtl, -estor-descendant pairs of values frpim, ..., V,,}.
both structural and value generalizations.

W . tall luate th d . The attacker can use her background knowledge of node
¥ Yve experimentally evajuale the proposed anonymizgs, g and structural relations to blter the records. If the
tion method, compare it to multirelation&-anony-

. . _ matching records are few, then there is a privacy breach.
mity [35], and demonstrate that it manages to prowo{g g P 4

anonymized datasets with limited information loss. O O
2 PROBLEM DEFINITION Cowia > Clowial, > Cowial, > Chomial, >
2.1 Data Model. Guar>  CFo D> Chrontite > Cproneiis> Pl > Gt
Qntibioties > Antibiotics > Painkiller>  CPainkiller > Antibiotics > Antibioties >

We consider a collectio of records that have a tree
structure with nodes which take values from a domlain ¢ G
Each record corresponds to a different individual. The ro0  Criospital, > Cltospital, >

antibiotics >

Fig. 1. Records of a medical tree database TD.

of each tree is a pseL_Jdo_-ld indicating a dlffe_rent individus > G

and all other nodes indicate a characteristic value of tl

individual. We do not consider duplicate sibling nodes c.

order between siblings, so our trees amrdered attribute Fig. 2. Example dataset D.

V4

ainkiller>

I
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Fig. 3. Example of an attack scenario. . )
Fig. 5. 3-anonymous dataset of Fig. 2.

Assume that the dataset of Fig. 2 is published and thgks 4 the resulting dataset and at the same time it provides
an attacker knows that the target individual was treatgth oain in terms of privacy; records are anonymized to
for RBu in Hosplt_ai anq that he was prescribed antlbIOt'Cf‘,roteCt identibcation from attackers who have complete
in Hospitab. Using this knowledge the attacker seeks g, jaqqge of them, i.e., from attackers who know all record
record that contains a path OHospital FIuO and a path \ 5 e k(m.n) _anonymity is motivated by this observation,
OHospital ~ Antibioti(_:sO. As shown in Fig 3.this rnatche%nd assumes that while attackers might kramy part of
only recordrs from !:'g.' 2 so the attacker identiPes th% record, it is unlikely that they will know the complete
record of the target individual as. record. Moreover, if some attacker actually knows the
complete record, there is no point in preventing them
2.3 Privacy Guarantee from identifying it in the dataset, since there is nothing

We propose a new privacy guarantee that protects tpdditional to be revealed. The most important goal is to be
identity of the individuals who are associated with tre@ble to prevent record identibcation by attackers who have
records from attackers with the aforementioned capabiliti@drtial knowledge. The parameterized naturekéf*™ -

by extending the&k™-anonymity guarantee [44] to addres@nonymity allows the publisher to tune the protection
structural knowledgek™-anonymity guarantees that anylevels to their needs. As a resui™ ™ -anonymity allows
attacker who knows up tm elements of a record, will not @honymizing data with signiPcantly reduced information
be able to identify less thanrecords in the published data.|0ss with respect t&-anonymity and scales gracefully to
We debnek(™™ -anonymity as: highly dimensional data. 8?:Y -anonymous version of the

Debnition 1: (k™™ -anonymity guarantee) A tree example of Fig. 2 appears in Fig. 4. Here, every attacker
databaseD is considered k(™™ -anonymous if any Who knows up to 2 values related to a person and the
attacker who has background knowledge wf node relation between these two values, e.g{ @as treated
labels andn structural relations between them (ancestofor lung disease in HospitgD cannot identify less than 3
descendant), is not able to use this knowledge to identifgcords in the published data.
less thark records inD. o )

An important characteristic d€(™™ -anonymity guarantee 2-4 Anonymization Operations

is the assumption that any node or structural associatiériree dataseD can be transformed to a dataget which

can be used as a quasi identiber. This is a very differeramplies tok("™™ -anonymity, by a series of transforma-
assumption from the one made kranonymity where it tions. The key idea is to replace rare values with a common
is apriori known which parts of a record can act as @eneralized value and to remove ancestor-descendant rela-
guasi identiber. When everything can act as quasi identibigons when they might lead to privacy breaches.
k-anonymity will create identical records as in the case L

of Fig. 5. It depicts a 3-anonymization of the examplé-4-1 Generalization

of Fig. 2 that has been created using generalization af{¢ assume the existence of a data generalization hierarchy

suppressionk-anonymity introduces a large information(PGH) for every item ofl . Each value of a clasa is
mapped to a value in the next most general level and these

values can be mapped to even more general ones. All class
hierarchies have a common root denoted as O*O, which
means OanyO value and is equivalent to suppressing the
value, as in Fig. 6. The proposed anonymization procedure
adopts a global recoding approach towards generalizations.
When a value is generalized, then all its appearances in
the dataset are replaced by the new, generalized value.
Moreover, when a value is generalized then all its siblings
are generalized to the same item. We refer to such replace-
ments made by the anonymization algorithm as general-
ization rules, e.g.{ Gastritis, Diarrhep# { Stomach Disor-

Fig. 4. 3%:D-anonymous dataset of Fig. 2. ded, OGastritisO and ODiarrhea® are replaced by OStomach
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2.5 Information Loss

Discase Treatment Medical Center

- =g The value generalization and the structural disassociation
Lung Disease | Stomach Disorder Physiotherapy Medicine General Hosp.  Maternity Hosp. . . .. .
. <o - transformations distort the original data and introduce
Flu Bronchitis Diarrhea Gastritis Neurological Orthopedic Painkiller Antibiotics Hospital, Hospital, Rea ~Gaia |nf0rmat|0n IOSS to the pub“shed anonymlzed data TO
evaluate the effect of the anonymization procedure we need
a common metric both for value generalizations and for
DisorderO. The anonymization algorithm will identify &tructural disassociations. Our basic idea is to measure the

generalization cutC on the DGH. A generalization cut réduced expressivity of the anonymized trees. To this end,
debnes the generalization level for each item in the daie have opted for a simple metric theverse path domain
domainl , i.e., it dePnes a horizontal OcutO on the hierardi§f’ D), which captures the reduction in the domain of
tree. For example, the horizontal cut shown in Fig. gegggal;ﬁgdthaaﬂdwsgrﬁgt/ueraall%dlsasgoﬂatgld#paéhSWhere
impli i ati it afh= ay 1,
implies the generalization rulegFlu, Bronchiti§# {Lung 5 "n"c "are original terms with class domairfs, B, C.
Diseasg and{ Pain killers, Antibiotic}# {Medicing. The Then original path domaih, is1, = A # B # Cwith
cut includes only the highest nodes under the dotted liseze|l ,| = |A| $ |B|$ |[C| Assume in the anonymization
in the bgure. procgss v¥ed_generalizlal tohAl and thathC(Ai) is ItheI .
er of distinct values that exist in the same level o
‘We note that the adopted data model assumes thdherajization withA;, in the same class. Then, the path
sibling nodes are always distinct. When the initial nodes transformed to generalized pattp, = A1 # by # ¢;.

are generalized, different sibling values can be replacétie size of the domain, of p, is [l , | = |C(A1)| $
by a common generalized one, e.g., in Fig. 4 OFluO dR4$ |C| ThenRPD is this case is:

OBronchitisO have been generalized to OLung DiseaseO. To 1 1

comply with the data model wenergethe two appearances RPD (Po) = 1= = G A 51T don) 1 BT d(e)! [C]
of OLung DiseaseO and their subtrees, i.e., all paths under !

OFIuO and OBronchitisO appear now under OLung Diseasb€e d() is a function that gives thelepthof a node,
i.e., its distance from the root. The intuition behind t{#
factor is that nodes that are closer to the root are more

Fig. 6. A cut on the generalization hierarchy.

2.4.2  Structural Disassociation. important. This intuition was veribed experimentally. The
Value generalization cannot address the structural badkP D for @ random patp=u, # aa# u, is:
ground knowledge of the attacker to providé™™ - 1 1

anonymity. For the latter, we need to hide the ancestor" D (P) = 1, d(us)! [C(uy)|! @&k d(un)! |C(un)|
descendant relationships that are rare enough to be identi- . 1
fying. We call this operatiostructural disassociatiorsD: e RPD for a tree record is debned as the average
o ) - RPD of all its distinct paths from the root to a lepf
Debnition 2: (structural disassociationLet P be a path |
r# aad#& p,# a# a4d#& p# b# n, # aa#& |. RPD(t):i' RPD (p) @
A structural disassociation of the relatian~~ b in the vse |

previous path would result to two pathst aaé& p, # _
a# aap, # n, # aa# |andr # aa# p, # b, Wwherelvs, is the number of leave nodes tn Note, that

which share the common prelx# 4a& p,. we need not take into account the structural disassocia-

As in the case of value generalization we opt for globéﬁon transformations explicitly, since Fhey implicitly affect
recoding in the case of structural disassociation; if weP D (t). For example, assume thatjn= a; # by # ¢
disassociate ~ b relation, this operation will take placethe relationby ~~ ¢, has to be removed to ensure privacy.
in all records ofD. In the anonymized data there will beThen we would end up with two pathg = &, # b and
no occurrences o ~ b. p. = a1 # c; with the common prebx;. It is easy to

Consider the example of Fig. 7. The original recopd S€€ that thékP D of any of these two paths is greater than

of Fig. 4 reveals that the patient was treated for gastrifig® RP D of the original path, i.e.RPD(p) < RPD (p1)

in Hospitap, but in the anonymized data this relation i@nd RPD(p) < RPD (pz), so RPD(p) will also be
lost; the recipient of the data knows that the patient wasnaller than the average &P D of p, andp,. Structural
treated for gastritis but does not know at which hospitgfisassociation always increases the valueRBD (t).

Note that the children nodes of the node OGastritis© remaif¥@mple 1:Consider the generalization hierarchy of
as children of its parent node, i.e., OAntibioticsO beconfdg- 6- TheRPD of ry andr; of Fig. 4 are:

a direct child of OHospitzD. RPD(ri) = 3 a( mzlazaf + @t Fuzazléeaaé?) =0.03
o RPD(r2) = 3 &2 aopsss * maes * 142) = 0023
The RPD for a dataseD is debned as the averag® D
@ o, > of all its tree records:
RPD (D L RPD 3
o> > s> > i ] ® ©

t!' D

Fig. 7. Structural disassociation example. where|D| is the total number of records in the dataset.
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2.5.1 Multi Level Mining Loss (ML ?) the Differential Multiple Level Mining Losg¢dML ?) [45]:

Capturing the information loss that is caused by anonymiza- i M er (o) dtree(ft[D # D)
tion is a challenging task since the anonymized dataset dML" = —h FT.(D)

might be used for different types of analysis. This is a =0 =
problem common to every anonymization framework, anwhere FT;(D) is the set of frequent subtreét in the

does not have a Sing|e best answer. To provide a Coﬁfjginal data, prOjeCted at theth Generalization |eve|,

- : mon) arnde and functiondtree(ft [D # D) calculates the distance
prehensive understanding of thé anonymlzatlonOsbetween a subtreét existing in the original data and

impact on the quality of the data, we employ multiplgts anonymous version in the released datddkt taking
information loss metrics that capture different aspects ebually into account value generalizations and structural

the data information. Th#&ulti Level Mining Loss ML 2)  disassociations. More formalljtree is dePned as follows:
[45], [21J is used. in literature to.e_xpress the amount of ) ' o1 q dlevel(v,v') BR (ft)
information that is lost when mining frequent itemsetsitree(ft |[D # D )=0.5— +0.

) o . N (ft) R(ft)
of different generalization levels of the anonymized data.
Given a dataseD and its anonymous versidd', theML 2 whereN (ft ) is the number of nodes in frequent subtfeg
of D' is one minus the ratio of the number of frequenR(ft) is the number of ancestor-descendant relations be-
itemsets that are preservedin, to the number of frequent tween nodes oft , andBR (ft ) is the number of ancestor-
itemsets inD, mined at all generalization levels. descendant relations disassociated during the anonymiza-

In the tree data scenario, we are interested in preserviign of ft . Functiondlevel(v, V') returns the difference of
structural information as well as attribute valubbl 2 can  the generalization levels between the initial value of node
be adapted to focus on the mining of frequent subtrees.,, 54 its anonymization', divided by the DGH height.

' " ET.(D") Example 3:Returning to the mined trees of Example
m 4) 2, we wquld calculate the value dftree for the frequent

=0 subtree O# Hospitap # Lung DiseaseO, given the initial
whereF T;() is the number of frequent subtrees, atitth  subtree O# Hospitab # FluO a@.5é12£+0 .58 = 0.083
generalization level. We calculakeT;(D) andFT;(D') as since DGH height is 3 and the difference between the
follows. We project the original data to DGH levels (i.e.|levels of OFIuO and OLung DiseaseO is 1. Had the relation
cuts which contain values of the same generalization levé)Hospital ~ Lung DiseaseO been structurally disassoci-
and perform frequent subtree mining at each lavérhe ated, the value ofitree would be0.5é$ +0.54 =0.583
total number of all these itemsets E?:o FT;(D). We
follow the gimilar procedur(_e fop’, but in this case we 3 ANONYMIZATION ALGORITHM
cannot project any generalized item Bf, to a more re- ) e
Pned generalization level, than its current. Intuitivés, 2 The problem we want to solve '(5 th)e followm_g;lven
measures the percentage of frequent subtrees that were :Iaoé:lataset.D, i the parameters ok?™™-anonymity and
in the released data, due to anonymization transformatiofis9€neralization hierarchyH, we want to transform by

Example 2: Assume that @rHospitab# FIUO is a fre- generallzatlonI and str'uctu(rilglsassoma}tlon the datadet
quent subtree in the original data. Then# @eneral [ © @ dataseD for whichkt™"-anonymity holds and the

Hospita¥ Lung DiseaseO and#Oospita# DiseaseO areinformation loss is minimunilhe solution to this problem

also frequent subtrees at the next two generalizatié%a pair(C,SD) of a generalization culC and a set of

levels. These three frequent subtrees will contribute t%“g:tural d'tsai‘?gfr'b?t'on rulesD. 2ytapg)!/mg (C’tSIch)
the denominator oML 2. Assume that the anonymiza-0 we get a -anonymous dataseh’. Lue to the

tion process results in a cut that contains the va?f—igh difbculty of the problem (we show that it is NP-

©)

MLZ=1"

ues OHospitgD, OLung DiseaseO. In this case, the f ard), we propose a heuristic algorithm that Pnds a OgoodO

quent subtree @rHospitab# FIuO will not be found (local optimum) but not optimal solution. To capture the
in the anonymized data. On the other hand, the srihformation loss, we use an estimation function based on

quent subtrees ®iGeneral Hospit# Lung DiseaseO and FI):D’ theEPD“’ wf|1_|cht_we de:Dne Iar:er n thelt_s(Tcuz%

O# Hospita# DiseaseO will be mined since their values ' °f €3ch generaiization cut we have mulliple daitier-
are above the generalization cut, 2avill be added to the ent structural disassociations. The complete solution space
nominator ofML 2. If the path C)H’ospit@\{»Lung Disease® comprises all the combinations of generalization cuts and

had been structurally disassociated, then none of the‘;gguctural disassociation transformations. Finding the opti-
’ al solution is NP-Hard. This follows from the fact that

original frequent subtrees could be mined in the result da{ﬁé problem of pnding the optim-anonymization of a
. . . " ) relational table, which is known to be NP-Hard [32], can
2'5'_2 Differential Multi Level Mining Loss (dML %) be reduced to a specibc case ofkkig™) -anonymization of
While ML > computes only the number of frequent subtree records. Assume that a relational taRlés represented
trees that no longer appear in their exact initial form '%8 a collectiorD of tree structured records that all have the

the anonymized data, it is also important to measure t .
similarity distance between the frequent subtrees mined §AMe Structure: a root node and all the belds of the table

the original data and the frequent subtrees mined from tg direct children of the root. Finding the optimél™™ -
anonymized data. To this end, we use an adjusted versioraobnymization forD, for m,n equal toROs arity solves
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also the problem of pnding the optimitanonymity for The synopsis tree includes all information of the input
R. Since the latter is an NP-Hard problem, then so is thdataset in a compressed form. It is sufpcient for calculating
identibcation of the optimat(™™ -anonymization. efbciently the support of combinations of original items
Because of the problem complexity we avoid performingnd paths. In the process of anonymization we need to
an exhaustive search of the solution space, instead wreate a synopsis tree for every projectiondfto a cut
provide a heuristic that explores promising subspaces. \@e Fortunately, we do not need to project every record and
propose a top-down algorithm which initially considers alhen create the synopsis tree for it We can directly
values to be generalized to O*O. The algorithm traversesgihgectS to C and create th@rojected synopsis treSc.
generalization hierarchy from top to bottom by specializinghe projection procedure is done as follows:
one node at each iterative step. Each specialization createg A new entry is added th. for every generalized item
a new hierarchy cut. If the cut does not guararkée™- gi that appears. This new entry has a listidfwhich
anonymity for the published dataset, then we explore the s the result of the union of thigl lists of all itemsi
possible structural disassociations for this cut. that are mapped tgi. We create the list of sidelinks
Checking whether a combination of a generalization  associated withyi, as the set of all sidelinks in the
cut and structural disassociation rules can prokee™ - entry of every itemi that is mapped tai.

anonymity if applied taD is not a trivial task. To perform  y The |apeli of every node ofS is replaced by the
the check efbciently we employ a memory structure termed  generalized itengi debned inC.

synopsis treewhich we present in the following section.  y Sjpling nodes with the samei label are merged
together. The new merged node has the same label
as the original nodes, and its list a is the union

of the lists of all original nodes. Redundant sidelinks
from item gi of the list to the same merged node of

3.1 Synopsis Tree

The synopsis tree facilitates deciding on thé&™m™-
anonymity of a dataset by tracing not only the support of
item combinations from , but also the support of paths the tree are eliminated.

that contain them. The termupportrefers to the number Example 5:Consider the synopsis tree of Fig. 8, and

of records that contain the path. The Synopsis tree is a fogg cutC={ Lung disease, Gastritis, Diarrhea, Neurological,

of trie tree, similar to FP-tree [23] and has two main part%rthopedic, Medicine, Hospital Hospitap, Rea, Gaih.

A tree structure, which is C~reated by sup_erimposing all implies generalization rule§Flu, Bronchitig# Lung
records ofD. Every recordOs root node is mapped 10 fisease and Antibiotics, Painkille}# Medicine. The re-
single node, the roat, of the synopsis tree. All paths thatgpective projected treB and sidelink list_ are illustrated
appear in a record are superimposed to the synopsis tijegig 9. Since nodes OFIUO and OBronchitisO were siblings
starting fromr ;. Each noden has two elements: a) a labelnger OHospitad in the synopsis, their projected nodes are
representing the item that is mapped to it and b) a sortgthrged as one OLung diseaseO node in the projected tree.
list of the ids of all the records that contain the exact patfhis node has thid list [2,3, 4] which is the union of lists

from the root to the current node, i.e,# aa# n. of OFIuO and OBronchitisO under Hogpitehe synopsis.

An array L, with one entry for each item of I . Each  The RPD as a heuristic The information loss metrics
entry has three elements a) a label with the iterthat dePned in Section 2.5 are used to evaluate the quality of the
corresponds to the entry, b) a list of the ids of all recorddnal results and they are calculated over the raw data. RPD
that containi and c) a link to every node in the tree thalS the average RPD of every record of the databét, 2

. L . , . _anddML 2 require mining the original and the anonymized
is labeled withi. These links are marked with dashed IIne%ataset. Using them for evaluating every candidate solution

in Figure 9, and will be referred to asidelinksin the \yould lead to an impractical anonymization algorithm. In-
rest of the paper. The order of the items in the array #ead, our algorithm uses a computationally cheap heuristic,
not important; it depends on the insertion order. The arrayhich is based ofRP D but it is calculated based only on
allows a horizontal access to the synopsis tree and it al$ Projected Synopsis tre&;. To compensate for this,

: ) : : er some experimental testing, we take into account the
supports checking whether the*-anonymity holds, which support of each node and also the number of distinct nodes

is a prerequisite ok(™™ -anonymity, without traversing (ndss,.) that exist inSc. The approximateRP D, for a
the tree. Note, that keeping the list of record ids that apathp from the root ofS¢ to a leaf is given by the following
associated with item in each entry oL is redundant; the function:

list can be created by merging the lists that are associated
with the tree nodes that have amabel. Because checking
the support of combinations of items is a very common
operation in the anonymization procedure we opted to keep
the redundant list, in order to increase performance.
Example 4:Consider the tree dataset of Figure 2 whic
contains four records. The respective synopsis tree is illL
trated in Figure 8. OHospit&) appears in records 1, 2 an
3, as a child of the root node in all of them. Thus, in th
synopsis-tree a node labelled OHospldahppears as a child

of the root. Its list ofids is [1, 2, 3] as shown in the Pgure Fig.

RPDa(p) =

(sup(u1) + da# sup(un))
d(ui) ! |C(ua)|! &adh d(un)! |C(un)|

(6)

wheresup(u;) is the support of the node;. TheRPD,,

L
" Hospital, | 112,341
| Hogital, | 1231
Bronchitis | [1,2]
T EER
Gastritis | [1.2,4]
Painkiller | [1.2,3.4]
Antibiotics | [1,23]

1 14] 121 141 21y

8. Synopsis tree.
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Le
11,2,34]
[123]

Iospital,

Hospital,
Gastritis | [1.2:4]
Lung Dis. | [1,2.34]

(clist) of records that support the rest of the relations in
cnr in Line 8. If at any point theclist contains between 0
andk records then the algorithm terminates, as the solution
violates thek(™™ -anonymity.

fMedicine [1.2341 Property 2: StructureCheck returns true if and only

the itemscmn with cnr relations between them, appear at
leastk times inD .

ValueCheck and StructureCheck are not com-
pletely symmetricValueCheck checks whether a cu@
providesk™-anonymity toD ¢, i.e., it checks alim-sized
combinations of the items appearing @ On the other
hands,StructureCheck checks only one combination
of items cmn and one set of relations between them
cnr. The reasons behind this choice are explained in the
anonymization algorithm of the following section.

[14]

[2.4] 2] 1,231

Fig. 9. Projected synopsis tree of Figure 8
for the wholeS¢ is given by Equation 7:

1 1!

= —— 1
RPDa(Sc) ndss.  Ivss.

RPDa(p)
p! S¢

@)

wherendsg,, is the total number of nodes &c.

3.2 Candidate Solution Check

The projected synopsis tre&- and the sidelink list. of o )
a dataseD, can be used to quickly verify if a solution3-3 Anonymization algorithm
(C, SD) (data hierarchy cut and structural disassociationWe propose a top-down algorithm that explores the solution
rules SD) are sufbcient for providind (™ -anonymity space starting from a state where all nodes are generalized
when applied toD. This process is performed in twoto the root of the hierarchy tree (a single node labelled O*O),
phases: thgeneralization checknd thestructural relation and no structural disassociations have taken pl&® €
check The former will examine whether all itemsets of sizé), and then proceeds by considering less generalized cuts
m contained inD - appear at leadt times. The latter will and structural disassociation rules for the projected dataset.
examine whether there are D at leastk records, that The complete solution space for the problem comprises
contain them-sized combinations, when also consideringf all possible cuts and all possible disassociation rules
any n structural relations between them. The pseudo cofl them. Exhaustively examining all possible solutions is
for the ValueCheck and StructureCheck functions not practical even for small datasets. Instead we propose
appear in Algorithms 1 and 2 respectively. a heuristic algorithm, namedl1CutSearch (ACS)

ValueCheck examines whether there is a combinatiothat examines generalizations and structural disassociation
of items (with size less than or equal no) that does not asymmetrically; it exhaustively examines every general-
appear at leask times inD. ThenC,SD cannot be a ization cut, but then greedily chooses how to structurally
valid solution sinceC cannot create the required suppordisassociate each projected dataset. We chose this strategy
for every combination. If the solution is discarded by thbecause of the respectively asymmetric cost in examining
generalization check, we can avoid creating the projectatl generalization cuts and all disassociation rules; the latter
synopsis treeS, which is expensive. It is easy to see thais signibPcantly more expensive in realistic datasets.
ValueCheck guarantees the following property: To understand howACS works consider the cut gener-

Property 1: ValueCheck returns true if and only if alization graph of Figure 10. The graph nodes depict all
D¢ is k™-anonymous, i.e., every combinationmfvalues possible cuts and the edges show how one cut can be
appears at leadt times. specialized to another one, by only specializing one item

If the generalization check is successful, the prdd C. TheACS will start from the most generic cu#) and
jected synopsis tre€so is created and it is used by
StructureCheck to examine whetheD supports
more thank times a combination of itememn with cnr
relations between therStructureCheck takes as input
Sc, i.e, the projected tree t&, the sidelink listL, a
combination of itemsmn, and a set of relationsnr that
hold between themn items. In Lines 4-6 the algorithm 4
collects the list fist) of records that support relation .
an ~ dn in D and then intersects this list with the list ¢

Input: S¢, L, (cmn, cnr) {cmn items, andcnr relations
between thein
Output: true,false {true if D¢ contains ¢mn,cnr) k times,
elsefalse
1: clist = all ids {brst intersection will initialize i
2: for all {an ~ dn} relations ofcnr do
tlist = $
for all nodesdn in the treedo
if the path fromdn to theroot containsan then
tlist = dn.list %tlist //all trees that
adhere to an ~ dn

Input: C,L,m 7. remove{an ~» dn} from cnr
Output: true, false {true if D¢ is k™ -anonymous, elséalse} 8: clist = clist &tlist ;
1: for all cm combinations of sizen in C do 9: if clist has 0 itemghen
2:  Intersect the lists front for every item ofcm 10: returntrue
3: if the intersection size is betwe&nand0 then 11:  else ifclist has less thak itemsthen
4: returnfalse 12: returnfalse

13: returntrue
Algorithm 2. StructureCheck()

5: returntrue
Algorithm 1. ValueCheck()
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visit all cuts of the graph only once. The pseudocode for Input: Sc, L, C .
ACS is presented in algorithm 4 Outpsultj: Sg {disassociation rulgs
) : . 1: =

The algorithm uses a stackTK to keep all neighbor 2: for all cmn combinations ofm items fromC do
nodes that have not been examined yet. At each step thes: fori=1...n do
brst node of the stack is popped and the algorithm exam- 4: for all cnri\ SD combinations of sizé of the items
ines whether the cutCut can providek(™™ -anonymity. . of cmn do
First the algorithm examines whether simglé-anonymity 5 while not StructureCheck (Sc, L, cmn, cnr i) - do

holds, by invokingvalueCheck. If ValueCheck fails,

- h ) y 6: select the relatiom ~~ b from cnr; with the
then k(™™ -anonymity cannot be achieved with this cut least positive support
or with any cut that is more specialized than the current 7 for all paths that contaim ~bdo
one so the algorithm simply continues with the next 23 movegr;e ghuldren ob t_gl_bngg’e its siblings
: [P _ : moveDb 10 become a siIbling
|tgm of STK. If ValueCheck succeeds, then it is cer- .. SD = SD %r //add r to existing
tain that the current cut can lead td™ ™ -anonymity disassociation rules
by performing enough structural disassocations. Thus the ;. returnsp
algorithm creates the projected synopsis t&e and in- Algorithm 3. FixStructure()

vokesFixStruct.ure (depicted .in algor_ithm 3), which nput: D, DGHierarchy . k. . m
performs the rqulred structural Fhsassomaﬂoﬁﬁ). If the Output: fC,SD) {(C,SD’) rendersD k (M ) -anonymous
cost of the solutioncCut, cSD) is smaller than the cost 1: Create synopsis tre® from D
of the best solution found until now, thegreCut, cSD) is 2: Create inverted list //L is created for
stored as the best solution. The algorithm then inserts all  generalized terms too
children ofcCut to STK and marks them aslosed When 3: stackSTK =§
there are no more nodes 8T K the algorithm terminates gf Esjttczo;st' » //Minimum Loss
and output{C, SD) as the best solution. The cost (interms 4. mark root as closed
of information loss) of each solution is estimated using the 7: STK .push¢oot)
RP D metric, introduced in Section 2.5. 8: while STK not emptydo
Example 6:Consider the DGH of Figure CS would g cCut=STK .pop() //current cut cCut

brst generalize all values tp*}, as shown in cuty of for all childrenC of cCut do

. - 11: if C not closedthen
Figure 10. TherACS proceeds to the next cof {Disease, 1. mark C as closed
Treatment, Hospithl In the next step there are three 13 STK .push()
possible values to generalize, which correspond to the threel4:  if ValueCheck(cCut, S, L) then
child nodes ofc;. After checking fork(™™-anonymity, 15 CreateSccue //We project S to cCut
these cuts are ordered from lower to higher loss cost. Let . gggst':':géi:(rggx ecs(gc)cu} /’e}éi?rl;;)te d cost
the order bec,, c3, ¢4 as shown in Figure 10. Cuk, is of current solution
specialized brst. This results to four new candidate cuts to1s: if cCost < bestCost then
be checked and ordered by their cost. If at least one of them19: bestCost= cCost
satispesk(™™ -anonymity and has a lower cost thap, 20: (C,SD) =(cCUT,cSD)

ACS proceeds to specialize it, and so forth. Otherwise, we 21: retumn (C, SD); _
roll back to c3, which has three possible new specializations Algorithm 4. AllCutSearch (ACS) Algorithm

a;smOnI)DiseaseO_ is now closedzlfcs andc, didnOt satisfy \ye examine a cut that contains its children in the DGH),

ki -anonymity,ACS would roll back toco and terminate. he yvalue is marked as closed in the following cuts. A cut
The pseudocode for thEixStructure function is s ¢josed, i.e., redundant, when all its values are closed.

presented in Algorithm 3. For each combination of items The trees in Figure 4 are 18D -anonymous version of

cmn of the current cutFixStructure considers all he injtial dataset in Figure 2. The solution consists of the
possible combinations of relatiorsr of sizes up ton ¢yt c={Lung Disease, Gastritis, Diarrhea, Neurological,

and calculates the supports ofnn undercnr using the  orthopedic, Medicine, HospitalHospitab, Rea, Gaik and
projected synopsis tre8- and the sidelinks of.. If any

combination ofcnr relations leads to a breach kf™™- o[
anonymity, FixStructure structurally disassociates the ¢,[{Discase, Treatment, Hospital} |
relations ofcnr, starting from the least frequent and adds
the disbanded relations ®D, until thecmn items, under
thecnr\ SD relations, are supported at le&stimes. Since
all item combinations of sizen are checked and all sets of
relations between them up to simeare checked, the Pnal  c, domehd brsin
solution (C, SD) will guaranteek(™™ -anonymity forD. therapy, Medicine)
Note that in the actual implementation we do not keep I P
track of the closed cuts explicitly. Instead we keep track of e Frnchits Diares, Gusirits, Neuwologieal Orihopedic]
the values that have been specialized, as they are fewer ar... *|Painkiller, Antibiotics. Hospital,, Hospital RA_J Gaia}
easier to represent. Once a value has been specialized (F#; 10. Cut-enumeration Tree for the DGH of Figure 6

{Disease, Treatment, Gene-
ral Hosp, Maternity Hosp}

{Treatment, Hospital,
Lung D, Stomach D}

{Disease, Hospital, Phy-
siotherapy, Medicine}

C
3

c
4

[}
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the structural disassociationSD={Hospita}~~Gastritis, is more expensive, but at the same time it is harder to
Hospitab~~Gastriti§ and guarantees that any attacker whbnd a satisfying solution to the problem. The top down
knows 2 values and the relation between them canralgorithm exploits the latter factor and it examines fewer

identify less than 3 records. and simpler solutions as grows. The size of does not
have a signibcant impact in practice; even ifjrows, the
3.4 Greedy Cut Search Algorithm algorithm is not affected if it does not reach solutions that

. . . are in the bottom of the solution graph, e.g., the graph of
The Al ICutSef':lrch (ACS) algorlthm avomjs explormg F.]igure 10. Finallyk, does not directly affect any algorithm
the whole solution space, but can still be quite EXPENSIVE Lt it affects how many solutions will satisfy the guarantee
the data domain or the dataset is large. To deal with biggser o . L
. 0 large values dk limit the number of solutions that will

and more expressive datasets, we proposeGiteedy Cut be examined by the algorithms

Search AlgorithmGCS, V.Vhlc.h performs a partial best Prst I-diversity If sensitive values, which cannot act as quasi
traversal of the generalization cut graph. TB&S works as

the ACS algorithm, but instead of examining all child cuts'dent'pers’ are identibed apriori as in mostiversity ap-

of the current cucCut it examines only they lowest cost proaches [48], [20], then we can easily extend our algorithm
ones (theSTK is a priority queue with lowesRP D, cuts to providel-diversity. The basic change needed is to add
being brst). At eac% iter);t(iqon stepCS pops all s?blings an additional condition invalueCheckand StructureCheck

i (m,n) _
of the brst node fronSTK (Line 9 of algorithm 4) byt [Nt would require thét"-anonymous groups of trees

does not initially insert any child of the popped cuts t(tno a'?‘.’ bel-diverse, i.e., to also containwell-represented
sensitive values [31].

the STL. It brst examines each cut, and then inserts theNe ative knowledaeWhen the data are sparse. like tree
children only ofg cuts that have the lowest cost. This way, 9 . 9 . . P '
ta, negative knowledge is less important and dangerous

the algorithm greedily follows the most promising paths an%a ositive knowledae- there are a few values associated
can signibcantly reduce the search space and computatiovv%f: P 9e,

time. Experimental results show that even for a srgalts ' | dag entity blthrjmﬁrousti\:halznarﬁl ndot. H0\r/]v%ver, theirre d
results are almost identical to those AZS. cou € cases where negative Knowledge can be acquire

Example 7: Returning to the example of Figure 10 an y an attacker and used to attack an anonymized dataset.
assumingg =.2, GCS would brst generalize all values tof negqtive knowledge has to be cqmpletely covered, ie.,
G and then proceed to;. In the next stepBCS would every item that does not appear in the record must be
check the three new can.didate cuts K™ -anonymity considered, then adjusting our heuristic for providing sim-
and order them from lower to high&P D ,, €.g..Cs, Cs, Cs " ple k-anonymity would be the best choice. Since negative
GCS would addc, andcs to the priority alijeue’ b’ut I%GI4 knowledge is not as identifying and easy to acquire as
since it has greater cost agct 2. The new cut's would be positive knowledge, the most interesting and practical case,
added to the&sCS priority queue'and the lowest cost Onearises when we .take partially into accoun.t. For examp[e,
e.9.,¢, would be popped. Specializing results to 4 new Wwe could take into account only negations of hospitals
cﬁt; butGCS would only 'add o the priority queue on the(because an attacker might be able to infer that a patient has
> cu,ts that have the leaBtPD . out of the 4 candidates not visited a hospital that is very far from her place of res-

- . idence) but ignore negations of treatments, since it is a lot
When the priority queue becomes emp@@ZS terminates. ; L i
P ya 2 harder for an attacker to verify that a patient never received

) ] a specibc kind of treatment. The proposed framework can
3.5 Discussion easily address intermediate cases; we would only have to
Complexity. We do not provide a complete complexitypopulate the records with the selected negations, engt O
analysis due to space restrictions and also because of uspitabO. The algorithms would then provide protection
difbculty of calculating the number of all possible cutsagainst attackers who know values that appear or do
Still, there are several complexity results that are drawrot appear in a record, considering only a subset of the
based on th&alueCheck andStructureCheck. The possible negative knowledge. This way, we can address the
size of the datasdiD| affects the construction o8, the most probable and dangerous negative knowledge without
size of the lists that are associated to the nodes and th&#oducing signibcant additional information loss.
operations on the lists. In all these cases the effe¢D¢f
is linear, thus the algorithm i®(|D|). FixStructure
andValueCheck have to calculate every combination of4 EXPERIMENTAL EVALUATION
m items from the current cuE (in the worst cas€ = |), In the section we present the experimental evaluation of our

m

resulting to a complexity oO('m—!). Moreover,| together algorithms. All implementations were done in C++ and alll

with DHG affect the total number of possible cuts. experiments were performed on an Intel Core i7 CPU, with
In practice the effect oin and | differs signibcantly 6GB RAM, running Ubuntu Linux.

from the worst case. In the caserofthe observed running  Algorithms. We implemented and compared 4 algo-

time is not exponential tm; it actually reduces up to somerithms, includingACS and GCS that are described in Sec-

value ofm and then increases almost linearly. This is dution 3. We implement a third anonymization algorithm that

to the fact that asn affects the anonymization proceduredoes not perform any structural transformations on the data.

in two competing ways: am grows each solution checkInstead, it rejects any solution that would require structural
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TABLE 1 _ is veribed by the experiments of Fig. 12. The performance
/T:goéggggfgzerrécord 100k’250k'12" gg:f‘gifnain 27% in terms of information loss is similar; in most cases both
Tree records deptd 7 T DGH Fanout 5 algorithms Pnd the same solution. On the other hand, there

is a huge gap in the performance of the two algorithms in
disassociations in order to achiek€™™-anonymity. We terms of computational cost. As shown in Fig.ags is at
term it asOnlyCutSearch (OCS) and use it as a point least an order of magnitude faster in most settings. For the
of reference to understand better the impact of structugtperiments of Fig. 12 and 13 we use the dataset of size
disassociation in the anonymization procedure. We furthgo0K, since the computational costAgS greatly increases
implemented the most closely related method to our owfar larger datasets. Results show tB&S provides almost
MiRaCle [34], a local recoding generalization algorithmhe same quality of anonymization withCS at only a
which clusters tree-like multiRelational records to fokm fraction of the computational cost. Because of this, we
anonymous group$diracle uses only generalization (localfocus in the rest of the experimental evaluationGEgS.
recoding) and suppression to transform the original datasetPerformance of GCS In Figures 14, 15 and 16 we

Data. For the experimental evaluation of the proposegvaluate the performance 6€S in terms of anonymization
algorithms we use the data from TPC-H [6], which igjuality. We compare our results to bdttiRaCleandOCS
a typical example of a database of customers, ordevghich rejects any possible solution that requires structural
products and suppliers, all linked via foreign keys. Wehanges. The experiments show t6&S preserves better
parse the relational tables and use the foreign keys to cregie data utility compared to algorithms that do not apply
tree records that represent different individual customeksructural transformations on the data.

The resulting trees express the following information: each In Fig. 14 we see the performance of the three algorithms
customer has made a number of orders at a particular dateterms of RPD. Despite the fact thaMiRaCle uses
each containing a number of products (items). To simplifycal recoding, it cannot surpass the proposed algorithms.
the experimental evaluation we used only the attributel$:introduces greateRPD in every case and fom < 5
customer nation, order price, order date, item quantihe RPD for MiRaCleis double than th&kPD for GCS.
manufacturer and brand name from the relational tablemhe inferior performance dfliRaClein terms of utility is
and kept the structural relations between values impliegtributed to two factors: a) the relaxed guarantee offered
by the schema of the database. Using the TPC-H dajf GCS and OCS and b) the structural disassociation they
generator we created the datasets described in Table 1. &Meploy. As expected)CS has a higher information loss
prst created a dataset of 1M records and sampled it to cregignGCS for all values of the parameters. The performance
the two other ones. We limited the fanout of the recordgap betweerGCS and OCS is more signibcant for more
(each customer may have up to two orders, each containiegaxed guarantees; ds decreases from 300 to 5 their
up to three items) to create a dataset where the ratio of ii¢lerence increases from 8.7% to 39.5%. A decrease in
size of each record to the total dataset size is small (if the from 6 to 4 also increaseBCSO information loss up to
records are too big and too detailed compared to the size5a%4 higher thar6CSOs.

the collection, only very low quality anonymization can be The main advantage GiCS is evident when we consider
produced with any method). We created a synthetic DGifle attackerOs structural knowledge. For 0 both GCS

of the values of the attributes with an average fanout of Bhnd0CS produce the same anonymization and outperform

Parameters. We study the behavior of the algorithmsMiRaCle by 56%. Asn increasesGCS remains relatively
with respect to the following parameters: la)parameter stable, whileOCS increases by 53%. Far = {2, 3 0CSO
which controls the strength of our privacy guarantee, iyss is 1.5 times higher tha6CSOs.MiRaCle remains
m which quantipes the attackerOs knowledgey which stable, but it has already greatly reduced the data quality.
measures the structural information that can be used as @s |D| increases from 100K to 1M record3CS mana-
quasi-identiber, d) the dataset sif¥| and e) parametey ges to reduce the information loss, by exploiting its in-
of the GCS algorithm. In every experiment we vary one ofreased Rexibility in data transformations, while the infor-
these parameters keeping others bxed. The default setiigtion loss ofOCS slightly increasesMiRaCleDs loss is
of our parameters i =20, m =3,n =2, |D| = 250,000 relatively steady and is on average double the l0S3GS.
andg = 2. After some experimentation we have identiPed Figures 15 and 16 show the experimental results of
the best values for thelimit andthreshold parameters of ML 2 and dML 2 metrics respectively. To measure them
MiRaCleas 150 and 0.1 and respectively.

Evaluation Metrics. We evaluate our method with re-  °2 5000 o5 ——
spect to execution time and information loss in terms of . 4000
the RPD, ML ? anddML ? metrics. i

ACS vs. GCS.The brst series of experiments, aims

3000
0.1
2000

Execution Time (sec)

at investigating the performance differences betwA€S 005 "
and the aggressive heuristic 6CS. Fig. 11 shows the , s ,
behavior ofGCS asg increases from 1 to 4. Fg = 2, the ! 2 3 ¢ ! 2 s “

9 9

performance o6CS in terms of information loss (measured,:ig_ 11.

. , > Effect of parameter g.
by RPD here) converges with that &CS. This bPnding
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Fig. 12. Information loss: ACS vs. GCS.
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Fig. 13. Execution Time: ACS vs. GCS.

we mined the original and the anonymized datasets frelations an attacker may know. Thus, execution time
frequent itemsets in all generalization levels, using suppancreases witln as shown in Fig. 17(c) since the number of
threshold 1%. This means that we mine frequent subtreesdes combinations that are checked for privacy violations
which appear in at least 2,500 records. only increases. In Fig. 17(d) we see tlf&ES evaluation

The results in terms oML ? and dML 2, demonstrate time increases linearly with the dataset sjpd.
similar behavior as those &8P D. In the case oML 2,
Miracle manages to outperform in some cases Ho@% Negative Knowledge To support our hypothesis that
and GCS. Still, this happens only when the anonymizedegative knowledge does not constitute a signibcant danger
result is of poor quality (form & 5, half the average in most real cases, we performed the following experiment:
record size) andML ? is over 0.8, which means that 80%for each combination ofn values andn relations, we
of the frequent subtrees are lost. On the other hand f@ndomly chose 1-4 additional values, which we assume as
m < 5, GCS manages to produce good quality resultsjegative knowledge of the attacker. We assumed attackers
but introducing 40% to 50% less information loss thawho know the negation of values from the original domain
Miracle. For example, in the case of the 250k dataséwe mark results concerning these attackers as OoriginalO)
10845 frequent subtrees were mined in the original datnd attackers who know the negation of generalized values,
at all generalization levels. Whil®CS preserves only from the next level of generalization (we mark those
1864 of themMiRaCle preserves 2358 subtrees. Both aras OgeneralizedO). In the case of attackers who know
outperformed byGCS which preserves 6457 subtrees fopnly negations of the original data, the attacks are easily
our default parameter setting<20, m=3, n=2). thwarted; when the negated value has been generalized, it

dML 2 results show that even when the exact patterean no longer be used by the attacker, e.g., an attacker
cannot be mined in the anonymized dataset (the2 is who knows Onot RuO, cannot rule out a record containing
around 80% foMiracle and high for the other algorithms) Olung diseaseO, which is the generalization of ORuO. We
the difference of those mined from the original ones is quitghose the values in a way that the background knowledge
low; the respectivalML 2 is below 19%. Here botldCS of the attacker, both positive and negative, matches at least
andGCS are clear winners oveMiracle, which applies high 1 record in the dataset. In the brst two graphs of Fig.
level generalizations and suppressions. Aga@$ proves 18, we depict the number of individuals whose privacy
almost insensitive tm, while the information loss foBCS has been breached, i.e., the number of individuals that
signibcantly increases asgrows. can be identibPed by knowledge combinations which have

Execution Time. The computational cost of oUBCS support less thark in the anonymized data, when the
algorithm is shown in Fig. 17. The effect &fis depicted additional negative knowledge is considered. We report
in Fig. 17(a). Higher values ok allow GCS to prune a the average number of individuals whose privacy has been
signibcant part of the search space and signibcantly redbceached per positive knowledge combination. In the brst
the computational cost. The execution time falls by 97%raph we depict how this number changes for different
ask goes from 5 to 100 and is further reduced by anoth&rand in the second one how it scales when the size of
85.8% whenk increases to 300. Then parameter affects the negative knowledgeg increases. We note that even
the execution time in two competing ways as described when considering negative knowledge of 4 values from the
Section 3.5. This results to a local minimum far= 4. Fig.  original domain, less than 0.001 individuals per knowledge
17(b) indicates that whem rises from 3 to 4, execution combination is affected, and when considering generalized
time decreases by -70.5%, whereas after 4 it increasedues this number rises to 0.21. In the next two graphs
signibcantly. Parameter does not limit the search spaceof Fig. 18, we investigate the vulnerability degree of the
of our algorithm, but it debPnes the amount of structur&xposed individuals. We depict the support distribution of
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the problematic knowledge combinations, i.e., the comhliechniques to achieve thigeneralizationand suppression
nations whose support becomes less tharnThe y-axis were introduced in [40].

traces the percentage of the total combinations that fallGeneralization based techniques that consider only global
in each size bucket. In the axis we depict the negative recoding to limit the search space were explored in [9],
knowledge that was possessed by the attacker in each c§®g]. Limiting the search space comes at the cost of
In the third graph of Fig. 18, the attacker only knowsncreased information loss. Generalization techniques that
the negation of original items, and she cannot reduce thge based on multidimensional local recoding [27], [7],
support of a combination to less than [10-14] recordg9] manage to achieve lower information loss. We em-
(with k=20), even forg=4, and this only happens in theploy a global single-dimensional subtree-domain recoding
0.001% of the combinations. When negation of generalizeghproach, as we explain in Section 2. The loss of utility
values is considered, the attacker can reach combinationgiaé to global recoding is compensated by the limits that
support [3-4] but, this happens only fgr4 and only in the parametersm and n set on attackers knowledge, which
0.0058% of the combinations. In summary, we believe thegsult to lower information loss.

the results support our hypothesis that negative knowledgerhe objective of most anonymizing algorithms is to bnd
does not give substantial de-anonymization power to @& optimal recoding of the data that satisPes a given privacy

attacker in sparse multidimensional data. guarantee and preserves as much data utility as possible.
The latter is accomplished by minimizing a function which
5 RELATED WORK estimates thénformation loss [32] proved that optimal k-

L. Sweeney proposeft-anonymity guarantee to addressanonymity for multidimensional QI is NP-hard, under both
linking attacks [40]. A table i&-anonymous if each recordthe generalization and suppression models. For the latter,
is indistinguishable from at lea®t ' 1 others with re- they proposed an approximate algorithm that minimizes the
spect to the QI set [39], [40]. To achieve this, QIs araumber of suppressed values with the approximation bound
transformed to form groups of records with identical QD(k alogk). [8] improved this bound tdD(k), while [38]
values, calledequivalence classe§he two most popular further reduced it td(logk).
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Even thoughk-anonymity guarantees the protections considered important, syntactic methods are preferred,
against identity disclosure, sensitive information may bmaking a compromise between privacy and utility. Sim-
revealed when there are many identical sensitive attributarly, [14] compares and analyzes both approaches, and
values within an equivalence class (attribute disclosureuggests that differential privacy is more appropriate for
The concept of-diversity [31] was introduced to addressprivacy-preserving data mining, while syntactic methods
the limitations of k-anonymity. [19], [48], [53], [30] presentare suitable for privacy-preserving data publishing.
various methods to solve theldiversity problem efpciently.
[20] extends [48] for sparse high-dimensional data. [4(%]i
proved that optimal-diversity is NP-hard for any & 3,
under the suppression model. They provide @fl 4d)-
approximation, wherad is the number of QI attributes

There are several works on privacy protection in high
mensional data. There is signibcant work on privacy
preservation on graph databases [13], [54], [51], but the
focus there is to protect the identity or other properties of
0:% single node in a single large graph. There is also work

in the releasgd dqta. .[24] showeq the_ vulnerability on privacy protection in trajectories [43], [33], [52]. In [36]
anatomy [48] indeFinetti attacks, which aim to learn thethe authors use a clustering method based on a log cost
correlation between sensitive and non-sensitive attribut|;—%setriC to anonymize trajectory data. These works cannot
gzlgiigtiB;)t/aes;(airs] 2;2’:’;3;‘ ?n(?w?c\)/re;n%ﬁ]vzrlll?(\el\;elg[tzhga]\t theeasily be exploited in our setting, since it assumes attack

. ony scenarios and transformations tailored to spatiotemporal
proposes an extension bidiversity, calledt-closenessto

protect against skewness attacks where the distributiondoafta' Furthermore, the_re 'S wo_rk In more S|m|.lar settings to
: ) . . .. our that offers protection against attribute disclosure [20]
SA in an equivalence class is different than the d|str|but|o(5} differential privacy [12]
of SA in the whole dataset. In [37], the authors propose '
k-anonymity andl-diversity algorithms that minimize the The works of [44], [45], [22], [42], [50], [18] are closely
number of data accesses by utilizing the summary structusdated to our approach, as they provide similar guarantees
maintained by the database management system for qui@tyunstructured data. In [44] the notion kf*-anonymity
selectivity. [10] extend-closeness by proposiriglikeness is introduced, which is similar to ouk(™™ -anonymity,
that limits the information gain of a sensitive value, whictput covers attackers who have only values as background
is debned as the difference between its original support atbwledge, so it is not suitable for our data model. [45] pro-
the respective support of this value in the microdata. ~ posed the application of disassociation in set-valued data,
where a transaction could be split in two or more parts. [50]
Perturbation-based methods add noise to the dataated [18] also anonymize transaction data. All these methods
achieve privacy [41], [11]. They attempt to bound attacker@s not assume any structural attacker knowledge, as they
posterior conbdence about a sensitive value in relatideal with unstructured data. Thus, they are not directly
to the prior belief. Other noise-adding methods enfora@mmparable to our method. [34], [35] consider the problem
differential privacy [17], [47], [28], which guarantees thabf providing privacy protection to individuals, whose data
the presence or absence of any individualOs record in éine scattered in several tables in a relational data base.
released dataset does not substantially affect the residtthis end they proposaultirelational k-anonymityStill,
of query analysis. However, [25] showed that differentidhe problem they address is simpler than the one we are
privacy does not adequately limit inference about the p&agacing; there is a distinction between sensitive values and
ticipation of an individual in the data. Interestingly, [15]QI and no structural transformation is considered. Moreover
has also shown that, even though any single individual tisere is the underlying assumption that the dimensionality
dominated by the noise, the noise is in turn dominated lo§ the quasi-identiber is limited, since the authors accept
the signal emerging from the whole population. Thus, the traditional unconditional debnition kfanonymity. The
Nadve Bayes classiber can be built to infer individualgfbposed algorithm in [34], [35]Miracle, employs local
sensitive values with non-trivial accuracy. Recently, [1&ecoding for anonymizing the data. With respect to our
studied empirical privacy and utility, based on the posterigroposal it provides a stricter privacy guarantee at the cost
beliefs of an attacker and their ability to draw inferencesf increased information loss. Depending on the application
about sensitive values in the data, to compare differemtea and the requirements, we believe that our proposal
privacy models. They show that the difference betweeallows the data publisher to better balance the tradeoff
differential privacy and various syntactic models is ledsetween privacy and utility, as it is customizable and can
dramatic than previously thought. Especially when accurapyovide more relaxed privacy guarantees.
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6 CONCLUSIONS [30]

In this paper, we are addressing the problem of anonym'[gl]
ing tree structured data in the presence of structural knowl-
edge. We propose ("™ -anonymity privacy guarantee[32]
which addresses background knowledge of both value
structure. We present an anonymization algorithm which
is able to creat&(™ ™ -anonymous datasets, by employin
value generalization and a novel data transformation, whi%ﬁl]
we term structural disassociation. We demonstrate expgss]
mentally that the proposed greedy algorithm is able to scale
to large datasets and outperform, in terms of informatijn

loss, methods that are based solely on value generalization.

[37]
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