
IEEE TRANSACTIONS ON KNOWLEGDE AND DATA ENGINEERING 1

Anonymizing Collections of
Tree-Structured Data

Olga Gkountouna, Student Member, IEEE, and Manolis Terrovitis

Abstract ÑCollections of real-world data usually have implicit or explicit structural relations. For example, databases link records
through foreign keys, and XML documents express associations between different values through syntax. Privacy preservation,
until now, has focused either on data with a very simple structure, e.g. relational tables, or on data with very complex structure
e.g. social network graphs, but has ignored intermediate cases, which are the most frequent in practice. In this work, we focus
on tree structured data. Such data stem from various applications, even when the structure is not directly reßected in the syntax,
e.g. XML documents. A characteristic case is a database where information about a single person is scattered amongst different
tables that are associated through foreign keys. The paper deÞnesk(m,n) -anonymity, which provides protection against identity
disclosure and proposes a greedy anonymization heuristic that is able to sanitize large datasets. The algorithm and the quality
of the anonymization are evaluated experimentally.

Index Terms Ñprivacy, tree data, anonymity, structural knowledge, generalization, disassociation.

F

1 INTRODUCTION

As personal information is collected in increasingly detailed
level by companies and organizations, privacy related con-
cerns are posing signiÞcant challenges to the data man-
agement community. Data anonymization techniques have
been proposed in order to allow processing of personal
data without compromising userÕs privacy. Nevertheless,
practical problems like dependencies between values in
personal records do not have a satisfying solution. In this
paper, we focus on the anonymization of tree-structured
personal records where values are linked through structural
links.

Personal information rarely comprises just a single tuple
in modern information systems. The information concern-
ing a single individual usually spans over several tables or it
is kept in a more ßexible representation as an XML record.
Such tree structured data cannot be anonymized effectively
with table based anonymization methods since the structural
relation between different Þelds substantially differentiates
the problem. The problem of anonymizing tree structured
data has only been addressed in existing research literature,
in the context of multirelationalk-anonymity [35]. In
our approach we consider a more general case for tree
structured data and we propose an anonymization method
that does not rely solely on the generalization of values,

¥ Olga Gkountouna is with the Department of Electrical and Computer
Engineering, NTUA, Greece. E-mail: olga@dblab.ece.ntua.gr
Her research has been co-Þnanced by the European Union (European
Social Fund) and Greek national funds through the Operational Pro-
gram ÒEducation and Lifelong LearningÓ of the National Strategic Ref-
erence Framework (NSRF) - Research Funding Program: Heracleitus
II. Investing in knowledge society through the European Social Fund.

¥ Manolis Terrovitis is with the Institute of the Management of Informa-
tion Systems, Athens, Greece. E-mail: mter@imis.athena-innovation.gr.
His work is supported by the EU/Greece funded KRIPIS Action: MEDA
Project.

but also on the simpliÞcation of the data tree.
Consider the medical records of Fig. 1. The depicted

trees at the top represent two medical records. Each tree
branch describes a health related incident. The Þrst level af-
ter root holds information about the hospital where a client
was admitted. The children nodes of the hospital nodes
show the diagnosis. An attacker who knows that a person
X suffered from ÒGastritisÓ and thatX was admitted to
ÒHospital1Ó cannot distinguish between the two trees. If the
attacker also knows thatX was treated for ÒGastritisÓat
ÒHospital1Ó, then he can be certain that the top left record
is the medical record ofX . To prevent attackers who have
such background knowledge from associating records to
individuals we provide an anonymization method that offers
protection against identity disclosure. We focus on identity
disclosure for three main reasons: a) in many practical
cases there are strict utility requirements that cannot be
met when more powerful guaranties are applied, b) there is
often inability to characterize attributes as sensitive or non-
sensitive and c) the privacy protection law in most countries
usually focuses on identity [4], [3], [5], [2], [1].

The paper proposesk(m,n) -anonymity, which guarantees
that an attacker who knows up tom elements of a record
and ton structural relationsbetween them elements will
not be able to match her background knowledge to less
than k matching records in the anonymized data. The
anonymization procedure does not only generalize values
that participate in rare item combinations but also simpliÞes
the structure of the records. The simpliÞcation is performed
by removing nodes from long paths and creating new
smaller paths. Returning to the example of Fig. 1, we can
ensure that both records will be indistinguishable to an
attacker who knows that a patient was treated for ÒGastritisÓ
in ÒHospital1Ó, by placing ÒGastritisÓ as a sibling to the
hospital (as shown in the two trees in lower part of Fig.
1). By examining these records, an attacker can infer that

IEEE TRANSACTIONS ON KNOWLEGDE AND DATA ENGINEERING 2

Fig. 1. Records of a medical tree database TD.

both these patients were treated for ÒGastritisÓ and that
they have both been to ÒHospital1Ó and ÒHospital2Ó. The
information that one patient was treated for gastritis in
the particular hospital is hidden, so the attacker can no
longer distinguish between the two records based on her
background knowledge.

We propose two anonymization algorithms in this direc-
tion. Our ÞrstAllCutSearch (ACS) algorithm explores
in a top-down fashion the lattice of all possible combi-
nations of value generalizations, and for each different
generalization it explores the possible structural transforma-
tions, and Þnds a solution that satisÞesk(m,n) -anonymity.
Because of the large solution spaceACS cannot scale to
large collections of data and thus we propose a more
aggressive greedy heuristic (GCS) which prunes the solution
search-space by selecting on-the-ßy the most promising
candidate solutions. Our experimental evaluation shows that
GCS scales well with the size of the dataset, and Þnds a
solution very close to the one found byACS in most tested
cases. Our main contributions include the following:

¥ We deÞne the problem of anonymizing tree structured
data and we explain in detail how the record structure
can act as a quasi-identiÞer.

¥ We deÞne thek(m,n) -anonymityprivacy guarantee and
explain how it is efÞcient in concrete attack scenarios.

¥ We introduce a novel data transformation,struc-
tural disassociation, which simpliÞes the structure
of the records and provides more ßexibility to the
anonymization procedure.

¥ We propose a novel anonymization algorithm and a
new information loss metric that takes into account
both structural and value generalizations.

¥ We experimentally evaluate the proposed anonymiza-
tion method, compare it to multirelationalk-anony-
mity [35], and demonstrate that it manages to provide
anonymized datasets with limited information loss.

2 PROBLEM DEFINITION

2.1 Data Model.

We consider a collectionD of records that have a tree
structure with nodes which take values from a domainI .
Each recordt corresponds to a different individual. The root
of each tree is a pseudo-id indicating a different individual
and all other nodes indicate a characteristic value of the
individual. We do not consider duplicate sibling nodes or
order between siblings, so our trees areunordered attribute

trees. All records follow a common schema that deÞnes
the class of each node, e.g. the element in the case of
XML. Each classA has a domainI A, domains of different
classes are mutually exclusiveI Ai

T
I Aj = ! for i "= j .

The union of all class domains isI . A path from the
root to the leaves cannot have more than one nodes of the
same class. The schema of the trees deÞnes a partial order
for the node classes. Following a path from the root, we
progressively meet nodes of larger class, i.e., a classB is
larger thanA if we meet values of classB after values of
classA. The ordering of classes is arbitrary and it is deÞned
by the publisher. The intuition between the ordering is to
avoid logical discrepancies in the structure of the tree; if
records include paths in the form of ÒHospital# Disease
TreatmentÓ, as in Fig. 1, then there will be no records
where the information will appear in different order, e.g.,
ÒDisease# Hospital# TreatmentÓ.

The proposed anonymization methods address datasets
like D . The original data owned by the publisher might be
in a different form, e.g., a multirelational schema, but it has
to be transformed to a dataset with the structure ofD for
the anonymization procedure. Richer information schemas
e.g., graphs, references from one tree to another, are not
addressed and can lead to privacy breaches.

2.2 Attack model.

We consider attackers who have partial knowledge about a
person, i.e., they know a part of the information that exists
in her record, and they want to use this partial knowledge
to identify the complete record inD . We assume that
an attacker has only positive knowledge about values and
structural relations for any user record. We do not consider
attackers who have negative knowledge i.e., the fact that a
user isnot associatedwith a certain value. We consider only
one structural relation: the relation ofancestor-descendant
(we denote thatb is a descendant ofa as a b), i.e.,
the attacker might know that two nodes appear in the
same path. Finally, we assume that attackers can have
structural knowledge only about nodes whose values are
known to them: if an attacker knowsm values of a record
{ v1, . . . , vm} , her structural knowledge would be a set of
ancestor-descendant pairs of values from{ v1, . . . , vm} .

The attacker can use her background knowledge of node
values and structural relations to Þlter the records. If the
matching records are few, then there is a privacy breach.

Fig. 2. Example dataset D .

IEEE TRANSACTIONS ON KNOWLEGDE AND DATA ENGINEERING 3

Fig. 3. Example of an attack scenario.

Assume that the dataset of Fig. 2 is published and that
an attacker knows that the target individual was treated
for ßu in Hospital1 and that he was prescribed antibiotics
in Hospital2. Using this knowledge the attacker seeks a
record that contains a path ÒHospital1 FluÓ and a path
ÒHospital2 AntibioticsÓ. As shown in Fig 3 this matches
only recordr 3 from Fig. 2, so the attacker identiÞes the
record of the target individual asr 3.

2.3 Privacy Guarantee

We propose a new privacy guarantee that protects the
identity of the individuals who are associated with tree
records from attackers with the aforementioned capabilities
by extending thekm-anonymity guarantee [44] to address
structural knowledge.km-anonymity guarantees that any
attacker who knows up tom elements of a record, will not
be able to identify less thank records in the published data.
We deÞnek(m,n) -anonymity as:

DeÞnition 1: (k(m,n) -anonymity guarantee) A tree
database D is considered k(m,n) -anonymous if any
attacker who has background knowledge ofm node
labels andn structural relations between them (ancestor-
descendant), is not able to use this knowledge to identify
less thank records inD .
An important characteristic ofk(m,n) -anonymity guarantee
is the assumption that any node or structural association
can be used as a quasi identiÞer. This is a very different
assumption from the one made ink-anonymity where it
is apriori known which parts of a record can act as a
quasi identiÞer. When everything can act as quasi identiÞer,
k-anonymity will create identical records as in the case
of Fig. 5. It depicts a 3-anonymization of the example
of Fig. 2 that has been created using generalization and
suppression.k-anonymity introduces a large information

Fig. 4. 3(2 ,1) -anonymous dataset of Fig. 2.

Fig. 5. 3-anonymous dataset of Fig. 2.

loss to the resulting dataset and at the same time it provides
little gain in terms of privacy; records are anonymized to
protect identiÞcation from attackers who have complete
knowledge of them, i.e., from attackers who know all record
values.k(m,n) -anonymity is motivated by this observation,
and assumes that while attackers might knowany part of
a record, it is unlikely that they will know the complete
record. Moreover, if some attacker actually knows the
complete record, there is no point in preventing them
from identifying it in the dataset, since there is nothing
additional to be revealed. The most important goal is to be
able to prevent record identiÞcation by attackers who have
partial knowledge. The parameterized nature ofk(m,n) -
anonymity allows the publisher to tune the protection
levels to their needs. As a result,k(m,n) -anonymity allows
anonymizing data with signiÞcantly reduced information
loss with respect tok-anonymity and scales gracefully to
highly dimensional data. A3(2 ,1) -anonymous version of the
example of Fig. 2 appears in Fig. 4. Here, every attacker
who knows up to 2 values related to a person and the
relation between these two values, e.g., ÒX was treated
for lung disease in Hospital1Ó cannot identify less than 3
records in the published data.

2.4 Anonymization Operations

A tree datasetD can be transformed to a datasetD ! which
complies tok(m,n) -anonymity, by a series of transforma-
tions. The key idea is to replace rare values with a common
generalized value and to remove ancestor-descendant rela-
tions when they might lead to privacy breaches.

2.4.1 Generalization
We assume the existence of a data generalization hierarchy
(DGH) for every item ofI . Each value of a classA is
mapped to a value in the next most general level and these
values can be mapped to even more general ones. All class
hierarchies have a common root denoted as Ò*Ó, which
means ÒanyÓ value and is equivalent to suppressing the
value, as in Fig. 6. The proposed anonymization procedure
adopts a global recoding approach towards generalizations.
When a value is generalized, then all its appearances in
the dataset are replaced by the new, generalized value.
Moreover, when a value is generalized then all its siblings
are generalized to the same item. We refer to such replace-
ments made by the anonymization algorithm as general-
ization rules, e.g.,{ Gastritis, Diarrhea} # { Stomach Disor-
der} , ÒGastritisÓ and ÒDiarrheaÓ are replaced by ÒStomach

IEEE TRANSACTIONS ON KNOWLEGDE AND DATA ENGINEERING 4

Fig. 6. A cut on the generalization hierarchy.

DisorderÓ. The anonymization algorithm will identify a
generalization cutC on the DGH. A generalization cut
deÞnes the generalization level for each item in the data
domainI , i.e., it deÞnes a horizontal ÒcutÓ on the hierarchy
tree. For example, the horizontal cut shown in Fig. 6
implies the generalization rules:{ Flu, Bronchitis} # { Lung
Disease} and{ Pain killers, Antibiotics} # { Medicine} . The
cut includes only the highest nodes under the dotted line
in the Þgure.

We note that the adopted data model assumes that
sibling nodes are always distinct. When the initial nodes
are generalized, different sibling values can be replaced
by a common generalized one, e.g., in Fig. 4 ÒFluÓ and
ÒBronchitisÓ have been generalized to ÒLung DiseaseÓ. To
comply with the data model wemergethe two appearances
of ÒLung DiseaseÓ and their subtrees, i.e., all paths under
ÒFluÓ and ÒBronchitisÓ appear now under ÒLung DiseaseÓ.

2.4.2 Structural Disassociation.

Value generalization cannot address the structural back-
ground knowledge of the attacker to providek(m,n) -
anonymity. For the latter, we need to hide the ancestor-
descendant relationships that are rare enough to be identi-
fying. We call this operationstructural disassociationSD:

DeÞnition 2: (structural disassociation) Let P be a path
r # á á á# pa # a # á á á# pb # b # nb # á á á# l.
A structural disassociation of the relationa b in the
previous path would result to two pathsr # á á á# pa #
a # á á ápb # nb # á á á# l and r # á á á# pa # b,
which share the common preÞxr # á á á# pa.

As in the case of value generalization we opt for global
recoding in the case of structural disassociation; if we
disassociatea b relation, this operation will take place
in all records ofD . In the anonymized data there will be
no occurrences ofa b.

Consider the example of Fig. 7. The original recordr 2

of Fig. 4 reveals that the patient was treated for gastritis
in Hospital2, but in the anonymized data this relation is
lost; the recipient of the data knows that the patient was
treated for gastritis but does not know at which hospital.
Note that the children nodes of the node ÒGastritisÓ remain
as children of its parent node, i.e., ÒAntibioticsÓ becomes
a direct child of ÒHospital2Ó.

Fig. 7. Structural disassociation example.

2.5 Information Loss

The value generalization and the structural disassociation
transformations distort the original data and introduce
information loss to the published anonymized data. To
evaluate the effect of the anonymization procedure we need
a common metric both for value generalizations and for
structural disassociations. Our basic idea is to measure the
reduced expressivity of the anonymized trees. To this end,
we have opted for a simple metric thereverse path domain
(RP D), which captures the reduction in the domain of
generalized and structurally disassociated paths.

Assume that we have a pathp = a1 # b1 # c1, where
a1, b1, c1 are original terms with class domainsA , B, C.
Then original path domainI p is I p = A # B # C with
size |I p| = |A| $ |B| $ |C|. Assume in the anonymization
process we generalizea1 to A1 and thatC(Ai) is the
number of distinct values that exist in the same level of
generalization withAi, in the same class. Then, the pathp
is transformed to ageneralized pathpg = A1 # b1 # c1.
The size of the domainI pg of pg is |I pg | = |C(A1)| $
|B| $ |C|. ThenRP D is this case is:

RP D (pg) =
1

I pg

=
1

d(A 1) ! |C(A 1)| ! d(b1) ! |B| ! d(c1) ! |C|

where d() is a function that gives thedepth of a node,
i.e., its distance from the root. The intuition behind thed()
factor is that nodes that are closer to the root are more
important. This intuition was veriÞed experimentally. The
RP D for a random pathp = u1 # á á á# un is:

RP D (p) =
1
I p

=
1

d(u1) ! |C(u1)| ! á á á! d(un) ! |C(un)|
(1)

The RP D for a tree recordt is deÞned as the average
RP D of all its distinct paths from the root to a leafp:

RP D (t) =
1

lvst

!

p! t

RP D (p) (2)

wherelvst is the number of leave nodes int. Note, that
we need not take into account the structural disassocia-
tion transformations explicitly, since they implicitly affect
RP D (t). For example, assume that inp = a1 # b1 # c1

the relationb1 c1 has to be removed to ensure privacy.
Then we would end up with two pathsp1 = a1 # b1 and
p2 = a1 # c1 with the common preÞxa1. It is easy to
see that theRP D of any of these two paths is greater than
the RP D of the original path, i.e.,RP D (p) < RPD (p1)
and RP D (p) < RPD (p2), so RP D (p) will also be
smaller than the average ofRP D of p1 andp2. Structural
disassociation always increases the value forRP D (t).

Example 1:Consider the generalization hierarchy of
Fig. 6. TheRP D of r 1 andr 2 of Fig. 4 are:
RP D (r 1) = 1

3 á(1
1á12á2á6 + 1

1á12 + 1
1á12á2á6á3á6) = 0 .03

RP D (r 2) = 1
4 á(2 1

1á12á2á6á3á6 + 1
1á12á2á6 + 1

1á12) = 0 .023

The RP D for a datasetD is deÞned as the averageRP D
of all its tree recordst:

RP D (D) =
1

|D |

!

t ! D

RP D (t) (3)

where|D | is the total number of records in the dataset.

IEEE TRANSACTIONS ON KNOWLEGDE AND DATA ENGINEERING 5

2.5.1 Multi Level Mining Loss (ML 2)

Capturing the information loss that is caused by anonymiza-
tion is a challenging task since the anonymized dataset
might be used for different types of analysis. This is a
problem common to every anonymization framework, and
does not have a single best answer. To provide a com-
prehensive understanding of thek(m,n) -anonymizationÕs
impact on the quality of the data, we employ multiple
information loss metrics that capture different aspects of
the data information. TheMulti Level Mining Loss (ML 2)
[45], [21] is used in literature to express the amount of
information that is lost when mining frequent itemsets
of different generalization levels of the anonymized data.
Given a datasetD and its anonymous versionD !, theML 2

of D ! is one minus the ratio of the number of frequent
itemsets that are preserved inD !, to the number of frequent
itemsets inD , mined at all generalization levels.

In the tree data scenario, we are interested in preserving
structural information as well as attribute values.ML 2 can
be adapted to focus on the mining of frequent subtrees.

ML 2 = 1 "

" h
i =0 F Ti (D ")

" h
i =0 F Ti (D)

(4)

whereF Ti() is the number of frequent subtrees, at thei -th
generalization level. We calculateF Ti(D) andF Ti(D !) as
follows. We project the original data to DGH levels (i.e.,
cuts which contain values of the same generalization level)
and perform frequent subtree mining at each leveli . The
total number of all these itemsets is

Ph
i=0 F Ti(D). We

follow the similar procedure forD !, but in this case we
cannot project any generalized item ofD !, to a more re-
Þned generalization level, than its current. Intuitively,ML 2

measures the percentage of frequent subtrees that were lost
in the released data, due to anonymization transformations.

Example 2:Assume that Òr# Hospital2# FluÓ is a fre-
quent subtree in the original data. Then Òr# General
Hospital# Lung DiseaseÓ and Òr# Hospital# DiseaseÓ are
also frequent subtrees at the next two generalization
levels. These three frequent subtrees will contribute to
the denominator ofML 2. Assume that the anonymiza-
tion process results in a cut that contains the val-
ues ÒHospital2Ó, ÒLung DiseaseÓ. In this case, the fre-
quent subtree Òr# Hospital2# FluÓ will not be found
in the anonymized data. On the other hand, the fre-
quent subtrees Òr# General Hospital# Lung DiseaseÓ and
Òr# Hospital# DiseaseÓ will be mined since their values
are above the generalization cut, so2 will be added to the
nominator ofML 2. If the path ÒHospital2 Lung DiseaseÓ
had been structurally disassociated, then none of these
original frequent subtrees could be mined in the result data.

2.5.2 Differential Multi Level Mining Loss (dML 2)

While ML 2 computes only the number of frequent sub-
trees that no longer appear in their exact initial form in
the anonymized data, it is also important to measure the
similarity distance between the frequent subtrees mined in
the original data and the frequent subtrees mined from the
anonymized data. To this end, we use an adjusted version of

the Differential Multiple Level Mining Loss(dML 2) [45]:

dML 2 =

" h
i =0

"
f t ! FT i(D) dtree(f t |D # D ")

" h
i =0 F Ti (D)

(5)

where F T i(D) is the set of frequent subtreesf t in the
original data, projected at thei -th Generalization level,
and functiondtree(f t |D # D !) calculates the distance
between a subtreef t existing in the original data and
its anonymous version in the released datasetD !, taking
equally into account value generalizations and structural
disassociations. More formallydtree is deÞned as follows:

dtree(f t | D # D ") = 0 .5

"
v ! f t dlevel(v, v")

N (f t)
+ 0 .5

BR (f t)
R(f t)

whereN (f t) is the number of nodes in frequent subtreef t ,
R(f t) is the number of ancestor-descendant relations be-
tween nodes off t , andBR(f t) is the number of ancestor-
descendant relations disassociated during the anonymiza-
tion of f t . Functiondlevel(v, v!) returns the difference of
the generalization levels between the initial value of node
v and its anonymizationv!, divided by the DGH height.

Example 3:Returning to the mined trees of Example
2, we would calculate the value ofdtree for the frequent
subtree Òr # Hospital2 # Lung DiseaseÓ, given the initial
subtree Òr # Hospital2 # FluÓ as0.5á1/3

2 +0 .5á0 = 0.083,
since DGH height is 3 and the difference between the
levels of ÒFluÓ and ÒLung DiseaseÓ is 1. Had the relation
ÒHospital2 Lung DiseaseÓ been structurally disassoci-
ated, the value ofdtree would be0.5á1/3

2 +0 .5á1
1 = 0 .583.

3 ANONYMIZATION ALGORITHM

The problem we want to solve is the following:Given
a dataset D , the parameters ofk(m,n) -anonymity and
a generalization hierarchyH , we want to transform by
generalization and structural disassociation the datasetD
to a datasetD ! for which k(m,n) -anonymity holds and the
information loss is minimum.The solution to this problem
is a pair (C, SD) of a generalization cutC and a set of
structural disassociation rulesSD. By applying (C, SD)
to D we get ak(m,n) -anonymous datasetD !. Due to the
high difÞculty of the problem (we show that it is NP-
Hard), we propose a heuristic algorithm that Þnds a ÒgoodÓ
(local optimum) but not optimal solution. To capture the
information loss, we use an estimation function based on
RP D , the RP Da, which we deÞne later in the section.

For each generalization cut we have multiple differ-
ent structural disassociations. The complete solution space
comprises all the combinations of generalization cuts and
structural disassociation transformations. Finding the opti-
mal solution is NP-Hard. This follows from the fact that
the problem of Þnding the optimalk-anonymization of a
relational table, which is known to be NP-Hard [32], can
be reduced to a speciÞc case of thek(m,n) -anonymization of
tree records. Assume that a relational tableR is represented
as a collectionD of tree structured records that all have the
same structure: a root node and all the Þelds of the table
as direct children of the root. Finding the optimalk(m,n) -
anonymization forD , for m, n equal toRÕs arity solves

IEEE TRANSACTIONS ON KNOWLEGDE AND DATA ENGINEERING 6

also the problem of Þnding the optimalk-anonymity for
R. Since the latter is an NP-Hard problem, then so is the
identiÞcation of the optimalk(m,n) -anonymization.

Because of the problem complexity we avoid performing
an exhaustive search of the solution space, instead we
provide a heuristic that explores promising subspaces. We
propose a top-down algorithm which initially considers all
values to be generalized to Ò*Ó. The algorithm traverses the
generalization hierarchy from top to bottom by specializing
one node at each iterative step. Each specialization creates
a new hierarchy cut. If the cut does not guaranteek(m,n) -
anonymity for the published dataset, then we explore the
possible structural disassociations for this cut.

Checking whether a combination of a generalization
cut and structural disassociation rules can providek(m,n) -
anonymity if applied toD is not a trivial task. To perform
the check efÞciently we employ a memory structure termed
synopsis tree, which we present in the following section.

3.1 Synopsis Tree

The synopsis tree facilitates deciding on thek(m,n) -
anonymity of a dataset by tracing not only the support of
item combinations fromI , but also the support of paths
that contain them. The termsupport refers to the number
of records that contain the path. The Synopsis tree is a form
of trie tree, similar to FP-tree [23] and has two main parts:
A tree structure, which is created by superimposing all
records ofD . Every recordÕs root node is mapped to a
single node, the rootr s of the synopsis tree. All paths that
appear in a record are superimposed to the synopsis tree
starting fromr s. Each noden has two elements: a) a label
representing the item that is mapped to it and b) a sorted
list of the ids of all the records that contain the exact path
from the root to the current node, i.e.,r s # á á á# n.
An array L , with one entry for each itemi of I . Each
entry has three elements a) a label with the itemi that
corresponds to the entry, b) a list of the ids of all records
that containi and c) a link to every node in the tree that
is labeled withi . These links are marked with dashed lines
in Figure 9, and will be referred to assidelinks in the
rest of the paper. The order of the items in the array is
not important; it depends on the insertion order. The array
allows a horizontal access to the synopsis tree and it also
supports checking whether thekm-anonymity holds, which
is a prerequisite ofk(m,n) -anonymity, without traversing
the tree. Note, that keeping the list of record ids that are
associated with itemi in each entry ofL is redundant; the
list can be created by merging the lists that are associated
with the tree nodes that have ani label. Because checking
the support of combinations of items is a very common
operation in the anonymization procedure we opted to keep
the redundant list, in order to increase performance.

Example 4:Consider the tree dataset of Figure 2 which
contains four records. The respective synopsis tree is illus-
trated in Figure 8. ÒHospital2Ó appears in records 1, 2 and
3, as a child of the root node in all of them. Thus, in the
synopsis-tree a node labelled ÒHospital2Ó appears as a child
of the root. Its list ofids is [1, 2, 3] as shown in the Þgure.

The synopsis tree includes all information of the input
dataset in a compressed form. It is sufÞcient for calculating
efÞciently the support of combinations of original items
and paths. In the process of anonymization we need to
create a synopsis tree for every projection ofD to a cut
C. Fortunately, we do not need to project every record and
then create the synopsis tree for cutC. We can directly
project S to C and create theprojected synopsis treeSC .
The projection procedure is done as follows:

¥ A new entry is added toL for every generalized item
gi that appears. This new entry has a list ofid which
is the result of the union of theid lists of all itemsi
that are mapped togi. We create the list of sidelinks
associated withgi, as the set of all sidelinks in the
entry of every itemi that is mapped togi.

¥ The label i of every node ofS is replaced by the
generalized itemgi deÞned inC.

¥ Sibling nodes with the samegi label are merged
together. The new merged node has the same label
as the original nodes, and its list ofid is the union
of the lists of all original nodes. Redundant sidelinks
from item gi of the list to the same merged node of
the tree are eliminated.

Example 5:Consider the synopsis tree of Fig. 8, and
the cutC={ Lung disease, Gastritis, Diarrhea, Neurological,
Orthopedic, Medicine, Hospital1, Hospital2, Rea, Gaia} .
C implies generalization rules{ Flu, Bronchitis} # Lung
disease and{ Antibiotics, Painkiller} # Medicine. The re-
spective projected treeSC and sidelink listL are illustrated
in Fig. 9. Since nodes ÒFluÓ and ÒBronchitisÓ were siblings
under ÒHospital1Ó in the synopsis, their projected nodes are
merged as one ÒLung diseaseÓ node in the projected tree.
This node has theid list [2, 3, 4] which is the union of lists
of ÒFluÓ and ÒBronchitisÓ under Hospital1 in the synopsis.

The RPD as a heuristic. The information loss metrics
deÞned in Section 2.5 are used to evaluate the quality of the
Þnal results and they are calculated over the raw data. RPD
is the average RPD of every record of the dataset,ML 2

anddML 2 require mining the original and the anonymized
dataset. Using them for evaluating every candidate solution
would lead to an impractical anonymization algorithm. In-
stead, our algorithm uses a computationally cheap heuristic,
which is based onRP D but it is calculated based only on
the Projected Synopsis treeSC . To compensate for this,
after some experimental testing, we take into account the
support of each node and also the number of distinct nodes
(ndsSC) that exist inSC . The approximateRP Da for a
pathp from the root ofSC to a leaf is given by the following
function:

RP D a (p) =
(sup(u1) + á á á+ sup(un))

d(u1) ! |C(u1)| ! á á á! d(un) ! |C(un)|
(6)

wheresup(ui) is the support of the nodeui. The RP Da

Fig. 8. Synopsis tree.

IEEE TRANSACTIONS ON KNOWLEGDE AND DATA ENGINEERING 7

Fig. 9. Projected synopsis tree of Figure 8

for the wholeSC is given by Equation 7:

RP D a (SC) =
1

ndsSC

!
1

lvsSC

!

p! SC

RP D a (p) (7)

wherendsSC is the total number of nodes ofSC .

3.2 Candidate Solution Check

The projected synopsis treeSC and the sidelink listL of
a datasetD , can be used to quickly verify if a solution
(C, SD) (data hierarchy cutC and structural disassociation
rules SD) are sufÞcient for providingk(m,n) -anonymity
when applied toD . This process is performed in two
phases: thegeneralization checkand thestructural relation
check. The former will examine whether all itemsets of size
m contained inDC appear at leastk times. The latter will
examine whether there are inD at leastk records, that
contain them-sized combinations, when also considering
any n structural relations between them. The pseudo code
for the ValueCheck and StructureCheck functions
appear in Algorithms 1 and 2 respectively.

ValueCheck examines whether there is a combination
of items (with size less than or equal tom) that does not
appear at leastk times in DC . Then C, SD cannot be a
valid solution sinceC cannot create the required support
for every combination. If the solution is discarded by the
generalization check, we can avoid creating the projected
synopsis treeSC , which is expensive. It is easy to see that
ValueCheck guarantees the following property:

Property 1: ValueCheck returns true if and only if
DC is km-anonymous, i.e., every combination ofm values
appears at leastk times.

If the generalization check is successful, the pro-
jected synopsis treeSC is created and it is used by
StructureCheck to examine whetherDC supports
more thank times a combination of itemscmn with cnr
relations between them.StructureCheck takes as input
SC , i.e, the projected tree toC, the sidelink list L , a
combination of itemscmn, and a set of relationscnr that
hold between thecmn items. In Lines 4-6 the algorithm
collects the list (tlist) of records that support relation
an dn in DC and then intersects this list with the list

Input: C,L ,m
Output: true, false { true if D C is km -anonymous, elsefalse}

1: for all cm combinations of sizem in C do
2: Intersect the lists fromL for every item ofcm
3: if the intersection size is betweenk and0 then
4: return false
5: return true

Algorithm 1. ValueCheck()

(clist) of records that support the rest of the relations in
cnr in Line 8. If at any point theclist contains between 0
andk records then the algorithm terminates, as the solution
violates thek(m,n) -anonymity.

Property 2: StructureCheck returns true if and only
the itemscmn with cnr relations between them, appear at
leastk times inDC .

ValueCheck and StructureCheck are not com-
pletely symmetric;ValueCheck checks whether a cutC
provideskm-anonymity toDC , i.e., it checks allm-sized
combinations of the items appearing inC. On the other
hands,StructureCheck checks only one combination
of items cmn and one set of relations between them
cnr . The reasons behind this choice are explained in the
anonymization algorithm of the following section.

3.3 Anonymization algorithm

We propose a top-down algorithm that explores the solution
space starting from a state where all nodes are generalized
to the root of the hierarchy tree (a single node labelled Ò*Ó),
and no structural disassociations have taken place (SD =
!), and then proceeds by considering less generalized cuts
and structural disassociation rules for the projected dataset.

The complete solution space for the problem comprises
of all possible cuts and all possible disassociation rules
for them. Exhaustively examining all possible solutions is
not practical even for small datasets. Instead we propose
a heuristic algorithm, namedAllCutSearch (ACS)
that examines generalizations and structural disassociation
asymmetrically; it exhaustively examines every general-
ization cut, but then greedily chooses how to structurally
disassociate each projected dataset. We chose this strategy
because of the respectively asymmetric cost in examining
all generalization cuts and all disassociation rules; the latter
is signiÞcantly more expensive in realistic datasets.

To understand howACS works consider the cut gener-
alization graph of Figure 10. The graph nodes depict all
possible cuts and the edges show how one cut can be
specialized to another one, by only specializing one item
in C. TheACS will start from the most generic cut (%) and

Input: Sc, L , (cmn, cnr) { cmn items, andcnr relations
between them}

Output: true, false { true if D C contains (cmn,cnr) k times,
elsefalse}

1: clist = all ids { Þrst intersection will initialize it}
2: for all { an dn} relations ofcnr do
3: tlist = $
4: for all nodesdn in the treedo
5: if the path fromdn to theroot containsan then
6: tlist = dn.list %tlist //all trees that

adhere to an dn
7: remove{ an dn} from cnr
8: clist = clist & tlist ;
9: if clist has 0 itemsthen

10: return true
11: else if clist has less thank items then
12: return false
13: return true
Algorithm 2. StructureCheck()

IEEE TRANSACTIONS ON KNOWLEGDE AND DATA ENGINEERING 8

visit all cuts of the graph only once. The pseudocode for
ACS is presented in algorithm 4.

The algorithm uses a stackSTK to keep all neighbor
nodes that have not been examined yet. At each step the
Þrst node of the stack is popped and the algorithm exam-
ines whether the cutcCut can providek(m,n) -anonymity.
First the algorithm examines whether simplekm-anonymity
holds, by invokingValueCheck. If ValueCheck fails,
then k(m,n) -anonymity cannot be achieved with this cut
or with any cut that is more specialized than the current
one, so the algorithm simply continues with the next
item of STK . If ValueCheck succeeds, then it is cer-
tain that the current cut can lead tok(m,n) -anonymity
by performing enough structural disassocations. Thus the
algorithm creates the projected synopsis treeSC and in-
vokes FixStructure (depicted in algorithm 3), which
performs the required structural disassociationscSD. If the
cost of the solution(cCut, cSD) is smaller than the cost
of the best solution found until now, then(cCut, cSD) is
stored as the best solution. The algorithm then inserts all
children ofcCut to ST K and marks them asclosed. When
there are no more nodes inSTK the algorithm terminates
and outputs(C, SD) as the best solution. The cost (in terms
of information loss) of each solution is estimated using the
RP D metric, introduced in Section 2.5.

Example 6:Consider the DGH of Figure 6.ACS would
Þrst generalize all values to{ * } , as shown in cutc0 of
Figure 10. ThenACS proceeds to the next cutc1 { Disease,
Treatment, Hospital} . In the next step there are three
possible values to generalize, which correspond to the three
child nodes ofc1. After checking fork(m,n) -anonymity,
these cuts are ordered from lower to higher loss cost. Let
the order bec2, c3, c4 as shown in Figure 10. Cutc2 is
specialized Þrst. This results to four new candidate cuts to
be checked and ordered by their cost. If at least one of them
satisÞesk(m,n) -anonymity and has a lower cost thanc2,
ACS proceeds to specialize it, and so forth. Otherwise, we
roll back to c3, which has three possible new specializations
as ÒDiseaseÓ is now closed. Ifc2, c3 and c4 didnÕt satisfy
k(m,n) -anonymity,ACS would roll back toc0 and terminate.

The pseudocode for theFixStructure function is
presented in Algorithm 3. For each combination of items
cmn of the current cut,FixStructure considers all
possible combinations of relationscnr of sizes up ton
and calculates the supports ofcmn under cnr using the
projected synopsis treeSC and the sidelinks ofL . If any
combination ofcnr relations leads to a breach ofk(m,n) -
anonymity,FixStructure structurally disassociates the
relations ofcnr , starting from the least frequent and adds
the disbanded relations toSD, until the cmn items, under
thecnr \ SD relations, are supported at leastk times. Since
all item combinations of sizem are checked and all sets of
relations between them up to sizen are checked, the Þnal
solution (C, SD) will guaranteek(m,n) -anonymity forD .

Note that in the actual implementation we do not keep
track of the closed cuts explicitly. Instead we keep track of
the values that have been specialized, as they are fewer and
easier to represent. Once a value has been specialized (i.e.,

Input: SC , L , C
Output: SD { disassociation rules}

1: SD = $
2: for all cmn combinations ofm items fromC do
3: for i = 1 . . . n do
4: for all cnr i \ SD combinations of sizei of the items

of cmn do
5: while not StructureCheck (SC , L, cmn, cnr i) do

6: select the relationa b from cnr i with the
least positive support

7: for all paths that containa b do
8: move the children ofb to become its siblings
9: moveb to become a sibling ofa

10: SD = SD %r //add r to existing
disassociation rules

11: returnSD
Algorithm 3. FixStructure()

Input: D , DGHierarchy , k, n, m
Output: (C, SD) { (C, SD) rendersD k (m,n) -anonymous}

1: Create synopsis treeS from D
2: Create inverted listL //L is created for

generalized terms too
3: stackST K = $
4: bestCost = ' ; //Minimum Loss
5: root = !
6: mark root as closed
7: ST K .push(root)
8: while ST K not emptydo
9: cCut=ST K .pop() //current cut cCut

10: for all childrenC of cCut do
11: if C not closedthen
12: mark C as closed
13: ST K .push(C)
14: if V alueCheck(cCut, S, L) then
15: CreateScCut //we project S to cCut
16: cSD = F ixStructure (ScCut , L, cCut)
17: cCost = cost(cCut, cSD) //estimated cost

of current solution
18: if cCost < bestCost then
19: bestCost = cCost
20: (C, SD) = (cCUT, cSD)
21: return (C, SD);
Algorithm 4. AllCutSearch (ACS) Algorithm

we examine a cut that contains its children in the DGH),
the value is marked as closed in the following cuts. A cut
is closed, i.e., redundant, when all its values are closed.

The trees in Figure 4 are the3(2 ,1) -anonymous version of
the initial dataset in Figure 2. The solution consists of the
cut C={ Lung Disease, Gastritis, Diarrhea, Neurological,
Orthopedic, Medicine, Hospital1, Hospital2, Rea, Gaia} and

Fig. 10. Cut-enumeration Tree for the DGH of Figure 6

IEEE TRANSACTIONS ON KNOWLEGDE AND DATA ENGINEERING 9

the structural disassociationsSD={ Hospital1 Gastritis,
Hospital2 Gastritis} and guarantees that any attacker who
knows 2 values and the relation between them cannot
identify less than 3 records.

3.4 Greedy Cut Search Algorithm

The AllCutSearch (ACS) algorithm avoids exploring
the whole solution space, but can still be quite expensive if
the data domain or the dataset is large. To deal with bigger
and more expressive datasets, we propose theGreedy Cut
Search AlgorithmGCS, which performs a partial best Þrst
traversal of the generalization cut graph. TheGCS works as
the ACS algorithm, but instead of examining all child cuts
of the current cutcCut it examines only theg lowest cost
ones (theST K is a priority queue with lowestRP Da cuts
being Þrst). At each iteration step,GCS pops all siblings
of the Þrst node fromSTK (Line 9 of algorithm 4) but
does not initially insert any child of the popped cuts to
the ST L. It Þrst examines each cut, and then inserts the
children only ofg cuts that have the lowest cost. This way
the algorithm greedily follows the most promising paths and
can signiÞcantly reduce the search space and computational
time. Experimental results show that even for a smallg, its
results are almost identical to those ofACS.

Example 7:Returning to the example of Figure 10 and
assumingg = 2 , GCS would Þrst generalize all values to
c0 and then proceed toc1. In the next step,GCS would
check the three new candidate cuts fork(m,n) -anonymity,
and order them from lower to higherRP Da, e.g.,c2, c3, c4.
GCS would addc2 andc3 to the priority queue, but notc4

since it has greater cost andg = 2 . The new cuts would be
added to theGCS priority queue and the lowest cost one,
e.g.,c2 would be popped. Specializingc2 results to 4 new
cuts, butGCS would only add to the priority queue on the
2 cuts that have the leastRP Da out of the 4 candidates.
When the priority queue becomes empty,GCS terminates.

3.5 Discussion

Complexity. We do not provide a complete complexity
analysis due to space restrictions and also because of the
difÞculty of calculating the number of all possible cuts.
Still, there are several complexity results that are drawn
based on theValueCheck andStructureCheck. The
size of the dataset|D | affects the construction ofS, the
size of the lists that are associated to the nodes and the
operations on the lists. In all these cases the effect of|D |
is linear, thus the algorithm isO(|D |). FixStructure
andValueCheck have to calculate every combination of
m items from the current cutC (in the worst caseC = I),
resulting to a complexity ofO(I m

m!). Moreover,I together
with DHG affect the total number of possible cuts.

In practice the effect ofm and I differs signiÞcantly
from the worst case. In the case ofm the observed running
time is not exponential tom; it actually reduces up to some
value ofm and then increases almost linearly. This is due
to the fact that asm affects the anonymization procedure
in two competing ways: asm grows each solution check

is more expensive, but at the same time it is harder to
Þnd a satisfying solution to the problem. The top down
algorithm exploits the latter factor and it examines fewer
and simpler solutions asm grows. The size ofI does not
have a signiÞcant impact in practice; even ifI grows, the
algorithm is not affected if it does not reach solutions that
are in the bottom of the solution graph, e.g., the graph of
Figure 10. Finallyk, does not directly affect any algorithm
but it affects how many solutions will satisfy the guarantee,
so large values ofk limit the number of solutions that will
be examined by the algorithms.

l-diversity If sensitive values, which cannot act as quasi
identiÞers, are identiÞed apriori as in mostl-diversity ap-
proaches [48], [20], then we can easily extend our algorithm
to provide l-diversity. The basic change needed is to add
an additional condition inValueCheckandStructureCheck
that would require thek(m,n) -anonymous groups of trees
to also bel-diverse, i.e., to also containl well-represented
sensitive values [31].

Negative knowledgeWhen the data are sparse, like tree
data, negative knowledge is less important and dangerous
than positive knowledge; there are a few values associated
with an entity but numerous that are not. However, there
could be cases where negative knowledge can be acquired
by an attacker and used to attack an anonymized dataset.
If negative knowledge has to be completely covered, i,e.,
every item that does not appear in the record must be
considered, then adjusting our heuristic for providing sim-
ple k-anonymity would be the best choice. Since negative
knowledge is not as identifying and easy to acquire as
positive knowledge, the most interesting and practical case,
arises when we take itpartially into account. For example,
we could take into account only negations of hospitals
(because an attacker might be able to infer that a patient has
not visited a hospital that is very far from her place of res-
idence) but ignore negations of treatments, since it is a lot
harder for an attacker to verify that a patient never received
a speciÞc kind of treatment. The proposed framework can
easily address intermediate cases; we would only have to
populate the records with the selected negations, e.g, Ònot
Hospital2Ó. The algorithms would then provide protection
against attackers who knowm values that appear or do
not appear in a record, considering only a subset of the
possible negative knowledge. This way, we can address the
most probable and dangerous negative knowledge without
introducing signiÞcant additional information loss.

4 EXPERIMENTAL EVALUATION

In the section we present the experimental evaluation of our
algorithms. All implementations were done in C++ and all
experiments were performed on an Intel Core i7 CPU, with
6GB RAM, running Ubuntu Linux.

Algorithms. We implemented and compared 4 algo-
rithms, includingACS andGCS that are described in Sec-
tion 3. We implement a third anonymization algorithm that
does not perform any structural transformations on the data.
Instead, it rejects any solution that would require structural

IEEE TRANSACTIONS ON KNOWLEGDE AND DATA ENGINEERING 10

TABLE 1
No of records|D | 100k,250k,1M Attributes 6
Avg nodes per record 12 Data Domain 276
Tree records depthd 4 DGH Fanout 5

disassociations in order to achievek(m,n) -anonymity. We
term it asOnlyCutSearch (OCS) and use it as a point
of reference to understand better the impact of structural
disassociation in the anonymization procedure. We further
implemented the most closely related method to our own,
MiRaCle [34], a local recoding generalization algorithm
which clusters tree-like multiRelational records to formk-
anonymous groups.Miracle uses only generalization (local
recoding) and suppression to transform the original dataset.

Data. For the experimental evaluation of the proposed
algorithms we use the data from TPC-H [6], which is
a typical example of a database of customers, orders,
products and suppliers, all linked via foreign keys. We
parse the relational tables and use the foreign keys to create
tree records that represent different individual customers.
The resulting trees express the following information: each
customer has made a number of orders at a particular date,
each containing a number of products (items). To simplify
the experimental evaluation we used only the attributes:
customer nation, order price, order date, item quantity,
manufacturer and brand name from the relational tables,
and kept the structural relations between values implied
by the schema of the database. Using the TPC-H data
generator we created the datasets described in Table 1. We
Þrst created a dataset of 1M records and sampled it to create
the two other ones. We limited the fanout of the records
(each customer may have up to two orders, each containing
up to three items) to create a dataset where the ratio of the
size of each record to the total dataset size is small (if the
records are too big and too detailed compared to the size of
the collection, only very low quality anonymization can be
produced with any method). We created a synthetic DGH
of the values of the attributes with an average fanout of 5.

Parameters. We study the behavior of the algorithms
with respect to the following parameters: a)k parameter
which controls the strength of our privacy guarantee, b)
m which quantiÞes the attackerÕs knowledge, c)n which
measures the structural information that can be used as a
quasi-identiÞer, d) the dataset size|D | and e) parameterg
of the GCS algorithm. In every experiment we vary one of
these parameters keeping others Þxed. The default setting
of our parameters isk = 20, m = 3 , n = 2 , |D | = 250, 000
andg = 2 . After some experimentation we have identiÞed
the best values for theclimit andthreshold parameters of
MiRaCleas 150 and 0.1 and respectively.

Evaluation Metrics. We evaluate our method with re-
spect to execution time and information loss in terms of
the RP D , ML 2 anddML 2 metrics.

ACS vs. GCS. The Þrst series of experiments, aims
at investigating the performance differences betweenACS
and the aggressive heuristic ofGCS. Fig. 11 shows the
behavior ofGCS asg increases from 1 to 4. Forg = 2 , the
performance ofGCS in terms of information loss (measured
by RP D here) converges with that ofACS. This Þnding

is veriÞed by the experiments of Fig. 12. The performance
in terms of information loss is similar; in most cases both
algorithms Þnd the same solution. On the other hand, there
is a huge gap in the performance of the two algorithms in
terms of computational cost. As shown in Fig. 13GCS is at
least an order of magnitude faster in most settings. For the
experiments of Fig. 12 and 13 we use the dataset of size
100K, since the computational cost ofACS greatly increases
for larger datasets. Results show thatGCS provides almost
the same quality of anonymization withACS at only a
fraction of the computational cost. Because of this, we
focus in the rest of the experimental evaluation onGCS.

Performance of GCS In Figures 14, 15 and 16 we
evaluate the performance ofGCS in terms of anonymization
quality. We compare our results to bothMiRaCleandOCS
which rejects any possible solution that requires structural
changes. The experiments show thatGCS preserves better
the data utility compared to algorithms that do not apply
structural transformations on the data.

In Fig. 14 we see the performance of the three algorithms
in terms of RP D . Despite the fact thatMiRaCle uses
local recoding, it cannot surpass the proposed algorithms.
It introduces greaterRP D in every case and form < 5
the RP D for MiRaCle is double than theRP D for GCS.
The inferior performance ofMiRaCle in terms of utility is
attributed to two factors: a) the relaxed guarantee offered
by GCS and OCS and b) the structural disassociation they
employ. As expected,OCS has a higher information loss
thanGCS for all values of the parameters. The performance
gap betweenGCS and OCS is more signiÞcant for more
relaxed guarantees; ask decreases from 300 to 5 their
difference increases from 8.7% to 39.5%. A decrease in
m from 6 to 4 also increasesOCSÕ information loss up to
54% higher thanGCSÕs.

The main advantage ofGCS is evident when we consider
the attackerÕs structural knowledge. Forn = 0 both GCS
andOCS produce the same anonymization and outperform
MiRaCle by 56%. Asn increasesGCS remains relatively
stable, whileOCS increases by 53%. Forn = { 2, 3} OCSÕ
loss is 1.5 times higher thanGCSÕs.MiRaCle remains
stable, but it has already greatly reduced the data quality.

As |D | increases from 100K to 1M records,GCS mana-
ges to reduce the information loss, by exploiting its in-
creased ßexibility in data transformations, while the infor-
mation loss ofOCS slightly increases.MiRaCleÕs loss is
relatively steady and is on average double the loss ofGCS.

Figures 15 and 16 show the experimental results of
ML 2 and dML 2 metrics respectively. To measure them

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3 4

R
P

D

g

GCS
ACS

 0

 1000

 2000

 3000

 4000

 5000

 1 2 3 4

E
xe

cu
tio

n
T

im
e

(s
ec

)

g

GCS

Fig. 11. Effect of parameter g.

IEEE TRANSACTIONS ON KNOWLEGDE AND DATA ENGINEERING 11

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

5 10 20 100 300 500

R
P

D

k

GCS
ACS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

3 4 5 6

m

GCS
ACS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

0 1 2 3

n

GCS
ACS

Fig. 12. Information loss: ACS vs. GCS.

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300

E
xe

cu
tio

n
T

im
e

(s
ec

)

k

GCS
ACS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3 4 5 6

m

GCS
ACS

 0

 50

 100

 150

 200

 250

 0 1 2 3

n

GCS
ACS

Fig. 13. Execution Time: ACS vs. GCS.

we mined the original and the anonymized datasets for
frequent itemsets in all generalization levels, using support
threshold 1%. This means that we mine frequent subtrees
which appear in at least 2,500 records.

The results in terms ofML 2 and dML 2, demonstrate
similar behavior as those ofRP D . In the case ofML 2,
Miracle manages to outperform in some cases bothOCS
and GCS. Still, this happens only when the anonymized
result is of poor quality (form & 5, half the average
record size) andML 2 is over 0.8, which means that 80%
of the frequent subtrees are lost. On the other hand for
m < 5, GCS manages to produce good quality results,
but introducing 40% to 50% less information loss than
Miracle. For example, in the case of the 250k dataset
10845 frequent subtrees were mined in the original data,
at all generalization levels. WhileOCS preserves only
1864 of them,MiRaClepreserves 2358 subtrees. Both are
outperformed byGCS which preserves 6457 subtrees for
our default parameter setting (k=20, m=3, n=2).

dML 2 results show that even when the exact patterns
cannot be mined in the anonymized dataset (theML 2 is
around 80% forMiracle and high for the other algorithms)
the difference of those mined from the original ones is quite
low; the respectivedML 2 is below 19%. Here bothOCS
andGCS are clear winners overMiracle, which applies high
level generalizations and suppressions. AgainGCS proves
almost insensitive ton, while the information loss forOCS
signiÞcantly increases asn grows.

Execution Time. The computational cost of ourGCS
algorithm is shown in Fig. 17. The effect ofk is depicted
in Fig. 17(a). Higher values ofk allow GCS to prune a
signiÞcant part of the search space and signiÞcantly reduce
the computational cost. The execution time falls by 97%
ask goes from 5 to 100 and is further reduced by another
85.8% whenk increases to 300. Them parameter affects
the execution time in two competing ways as described in
Section 3.5. This results to a local minimum form = 4 . Fig.
17(b) indicates that whenm rises from 3 to 4, execution
time decreases by -70.5%, whereas after 4 it increases
signiÞcantly. Parametern does not limit the search space
of our algorithm, but it deÞnes the amount of structural

relations an attacker may know. Thus, execution time
increases withn as shown in Fig. 17(c) since the number of
nodes combinations that are checked for privacy violations
only increases. In Fig. 17(d) we see thatGCS evaluation
time increases linearly with the dataset size|D |.

Negative Knowledge. To support our hypothesis that
negative knowledge does not constitute a signiÞcant danger
in most real cases, we performed the following experiment:
for each combination ofm values andn relations, we
randomly chose 1-4 additional values, which we assume as
negative knowledge of the attacker. We assumed attackers
who know the negation of values from the original domain
(we mark results concerning these attackers as ÒoriginalÓ)
and attackers who know the negation of generalized values,
from the next level of generalization (we mark those
as ÒgeneralizedÓ). In the case of attackers who know
only negations of the original data, the attacks are easily
thwarted; when the negated value has been generalized, it
can no longer be used by the attacker, e.g., an attacker
who knows Ònot ßuÓ, cannot rule out a record containing
Òlung diseaseÓ, which is the generalization of ÒßuÓ. We
chose the values in a way that the background knowledge
of the attacker, both positive and negative, matches at least
1 record in the dataset. In the Þrst two graphs of Fig.
18, we depict the number of individuals whose privacy
has been breached, i.e., the number of individuals that
can be identiÞed by knowledge combinations which have
support less thank in the anonymized data, when the
additional negative knowledge is considered. We report
the average number of individuals whose privacy has been
breached per positive knowledge combination. In the Þrst
graph we depict how this number changes for different
k and in the second one how it scales when the size of
the negative knowledgeq increases. We note that even
when considering negative knowledge of 4 values from the
original domain, less than 0.001 individuals per knowledge
combination is affected, and when considering generalized
values this number rises to 0.21. In the next two graphs
of Fig. 18, we investigate the vulnerability degree of the
exposed individuals. We depict the support distribution of

IEEE TRANSACTIONS ON KNOWLEGDE AND DATA ENGINEERING 12

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 50 100 150 200 250 300

R
P

D

k

GCS
OCS

MiRaCle
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 3 4 5 6

m

GCS
OCS

MiRaCle
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 1 2 3

n

GCS
OCS

MiRaCle
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 100 200 300 400 500 600 700 800 900 1000

|D| (thousands records)

GCS
OCS

MiRaCle

Fig. 14. RPD of GCS vs. OCS and MiRaCle: effect of k, m, n, |D |

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

 M
L2

k

GCS
OCS

MiRaCle
 0

 0.2

 0.4

 0.6

 0.8

 1

 3 4 5 6

m

GCS
OCS

MiRaCle
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3

n

GCS
OCS

MiRaCle
 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

|D| (thousands records)

GCS
OCS

MiRaCle

Fig. 15. ML 2 Data mining loss metric.

 0

 0.05

 0.1

 0.15

 0.2

 0 50 100 150 200 250 300

 d
M

L2

k

GCS
OCS

MiRaCle
 0

 0.05

 0.1

 0.15

 0.2

 3 4 5 6

m

GCS
OCS

MiRaCle
 0

 0.05

 0.1

 0.15

 0.2

 0 1 2 3

n

GCS
OCS

MiRaCle
 0

 0.05

 0.1

 0.15

 0.2

 100 200 300 400 500 600 700 800 900 1000

|D| (thousands records)

GCS
OCS

MiRaCle

Fig. 16. dML 2 Data mining loss metric.

 10

 100

 1000

 0 50 100 150 200 250 300

E
xe

cu
tio

n
T

im
e

(s
ec

)

k

GCS

 0

 1000

 2000

 3000

 4000

 5000

 3 4 5 6

m

GCS

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3

n

GCS

 0

 2000

 4000

 6000

 8000

 10000

 100 200 300 400 500 600 700 800 900 1000

|D| (thousands records)

GCS

Fig. 17. Execution Time of GCS: effect of k, m, n, |D |

the problematic knowledge combinations, i.e., the combi-
nations whose support becomes less thank. The y-axis
traces the percentage of the total combinations that fall
in each size bucket. In thex axis we depict the negative
knowledge that was possessed by the attacker in each case.
In the third graph of Fig. 18, the attacker only knows
the negation of original items, and she cannot reduce the
support of a combination to less than [10-14] records
(with k=20), even forq=4, and this only happens in the
0.001% of the combinations. When negation of generalized
values is considered, the attacker can reach combinations of
support [3-4] but, this happens only forq=4 and only in the
0.0058% of the combinations. In summary, we believe that
the results support our hypothesis that negative knowledge
does not give substantial de-anonymization power to an
attacker in sparse multidimensional data.

5 RELATED WORK

L. Sweeney proposedk-anonymityguarantee to address
linking attacks [40]. A table isk-anonymous if each record
is indistinguishable from at leastk ' 1 others with re-
spect to the QI set [39], [40]. To achieve this, QIs are
transformed to form groups of records with identical QI
values, calledequivalence classes. The two most popular

techniques to achieve this,generalizationand suppression
were introduced in [40].

Generalization based techniques that consider only global
recoding to limit the search space were explored in [9],
[26]. Limiting the search space comes at the cost of
increased information loss. Generalization techniques that
are based on multidimensional local recoding [27], [7],
[49] manage to achieve lower information loss. We em-
ploy a global single-dimensional subtree-domain recoding
approach, as we explain in Section 2. The loss of utility
due to global recoding is compensated by the limits that
parametersm and n set on attackers knowledge, which
result to lower information loss.

The objective of most anonymizing algorithms is to Þnd
an optimal recoding of the data that satisÞes a given privacy
guarantee and preserves as much data utility as possible.
The latter is accomplished by minimizing a function which
estimates theinformation loss. [32] proved that optimal k-
anonymity for multidimensional QI is NP-hard, under both
the generalization and suppression models. For the latter,
they proposed an approximate algorithm that minimizes the
number of suppressed values with the approximation bound
O(k álogk). [8] improved this bound toO(k), while [38]
further reduced it toO(logk).

IEEE TRANSACTIONS ON KNOWLEGDE AND DATA ENGINEERING 13

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400 450 500

vu
ln

er
ab

le
 in

di
vi

du
al

s
pe

r
co

m
bi

na
tio

n

k

original
generalized

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 2 3 4

q (negative knowledge)

original
generalized

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

1 2 3 4

P
er

ce
nt

ag
e

of
 v

ul
ne

ra
bl

e
co

m
bi

na
tio

ns

q (negative knowledge)

(original) 1
2

[3-4]
[5-9]

[10-14]
[15-19]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4

q (negative knowledge)

(generalized) 1
2

[3-4]
[5-9]

[10-14]
[15-19]

Fig. 18. Impact of negative knowledge.

Even though k-anonymity guarantees the protection
against identity disclosure, sensitive information may be
revealed when there are many identical sensitive attribute
values within an equivalence class (attribute disclosure).
The concept ofl -diversity [31] was introduced to address
the limitations of k-anonymity. [19], [48], [53], [30] present
various methods to solve thel-diversity problem efÞciently.
[20] extends [48] for sparse high-dimensional data. [46]
proved that optimall-diversity is NP-hard for anyl & 3,
under the suppression model. They provide anO(l ád)-
approximation, whered is the number of QI attributes
in the released data. [24] showed the vulnerability of
anatomy [48] indeFinetti attacks, which aim to learn the
correlation between sensitive and non-sensitive attributes
using a Bayesian network. However, [15] showed that the
deFinetti attack is effective only for small values ofl . [29]
proposes an extension ofl-diversity, calledt-closeness, to
protect against skewness attacks where the distribution of
SA in an equivalence class is different than the distribution
of SA in the whole dataset. In [37], the authors propose
k-anonymity andl-diversity algorithms that minimize the
number of data accesses by utilizing the summary structure
maintained by the database management system for query
selectivity. [10] extendt-closeness by proposing! -likeness
that limits the information gain of a sensitive value, which
is deÞned as the difference between its original support and
the respective support of this value in the microdata.

Perturbation-based methods add noise to the data to
achieve privacy [41], [11]. They attempt to bound attackerÕs
posterior conÞdence about a sensitive value in relation
to the prior belief. Other noise-adding methods enforce
differential privacy [17], [47], [28], which guarantees that
the presence or absence of any individualÕs record in the
released dataset does not substantially affect the result
of query analysis. However, [25] showed that differential
privacy does not adequately limit inference about the par-
ticipation of an individual in the data. Interestingly, [15]
has also shown that, even though any single individual is
dominated by the noise, the noise is in turn dominated by
the signal emerging from the whole population. Thus, a
Na¬õve Bayes classiÞer can be built to infer individualsÕ
sensitive values with non-trivial accuracy. Recently, [16]
studied empirical privacy and utility, based on the posterior
beliefs of an attacker and their ability to draw inferences
about sensitive values in the data, to compare different
privacy models. They show that the difference between
differential privacy and various syntactic models is less
dramatic than previously thought. Especially when accuracy

is considered important, syntactic methods are preferred,
making a compromise between privacy and utility. Sim-
ilarly, [14] compares and analyzes both approaches, and
suggests that differential privacy is more appropriate for
privacy-preserving data mining, while syntactic methods
are suitable for privacy-preserving data publishing.

There are several works on privacy protection in high
dimensional data. There is signiÞcant work on privacy
preservation on graph databases [13], [54], [51], but the
focus there is to protect the identity or other properties of
a single node in a single large graph. There is also work
on privacy protection in trajectories [43], [33], [52]. In [36]
the authors use a clustering method based on a log cost
metric to anonymize trajectory data. These works cannot
easily be exploited in our setting, since it assumes attack
scenarios and transformations tailored to spatiotemporal
data. Furthermore, there is work in more similar settings to
our that offers protection against attribute disclosure [20]
or differential privacy [12].

The works of [44], [45], [22], [42], [50], [18] are closely
related to our approach, as they provide similar guarantees
for unstructured data. In [44] the notion ofkm-anonymity
is introduced, which is similar to ourk(m,n) -anonymity,
but covers attackers who have only values as background
knowledge, so it is not suitable for our data model. [45] pro-
posed the application of disassociation in set-valued data,
where a transaction could be split in two or more parts. [50]
and [18] also anonymize transaction data. All these methods
do not assume any structural attacker knowledge, as they
deal with unstructured data. Thus, they are not directly
comparable to our method. [34], [35] consider the problem
of providing privacy protection to individuals, whose data
are scattered in several tables in a relational data base.
To this end they proposemultirelational k-anonymity. Still,
the problem they address is simpler than the one we are
facing; there is a distinction between sensitive values and
QI and no structural transformation is considered. Moreover
there is the underlying assumption that the dimensionality
of the quasi-identiÞer is limited, since the authors accept
the traditional unconditional deÞnition ofk-anonymity. The
proposed algorithm in [34], [35],Miracle, employs local
recoding for anonymizing the data. With respect to our
proposal it provides a stricter privacy guarantee at the cost
of increased information loss. Depending on the application
area and the requirements, we believe that our proposal
allows the data publisher to better balance the tradeoff
between privacy and utility, as it is customizable and can
provide more relaxed privacy guarantees.

IEEE TRANSACTIONS ON KNOWLEGDE AND DATA ENGINEERING 14

6 CONCLUSIONS

In this paper, we are addressing the problem of anonymiz-
ing tree structured data in the presence of structural knowl-
edge. We proposek(m,n) -anonymity privacy guarantee
which addresses background knowledge of both value and
structure. We present an anonymization algorithm which
is able to createk(m,n) -anonymous datasets, by employing
value generalization and a novel data transformation, which
we term structural disassociation. We demonstrate experi-
mentally that the proposed greedy algorithm is able to scale
to large datasets and outperform, in terms of information
loss, methods that are based solely on value generalization.

REFERENCES

[1] Australian Privacy Act. www.austlii.edu.au/au/legis/cth/consolact/
pa1988108.

[2] Canadian Privacy Act. laws-lois.justice.gc.ca/eng/acts/P-21/.
[3] Data Protection Act 1998, UK. www.legislation.gov.uk/ukpga/1998/

29/contents.
[4] GR Law. www.dpa.gr/portal/page?pageid=33,43560&dad=portal.
[5] HIPAA act, US. http://health.state.tn.us/hipaa/.
[6] TPC-H Homepage. http://www.tpc.org/tpch/.
[7] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy,

D. Thomas, and A. Zhu. Achieving Anonymity via Clustering. In
PODS, 2006.

[8] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Pani-
grahy, D. Thomas, and A. Zhu. Approximation Algorithms for k-
Anonymity. Journal of Privacy Technology, 2005.

[9] R. J. Bayardo and R. Agrawal. Data Privacy through Optimal k-
Anonymization. InICDE, pages 217Ð228, 2005.

[10] J. Cao and P. Karras. Publishing microdata with a robust privacy
guarantee.PVLDB, 5(11):1388Ð1399, 2012.

[11] R. Chaytor and K. Wang. Small-domain randomization: Same
privacy more utility. InVLDB, 2010.

[12] R. Chen, N. Mohammed, B. C. M. Fung, B. C. Desai, and
L. Xiong. Publishing set-valued data via differential privacy.PVLDB,
4(11):1087Ð1098, 2011.

[13] J. Cheng, A. W.-c. Fu, and J. Liu. K-isomorphism: privacy preserving
network publication against structural attacks. InSIGMOD, 2010.

[14] C. Clifton and T. Tassa. On syntactic anonymity and differential
privacy. In PRIVDB, 2013.

[15] G. Cormode. Personal privacy vs population privacy: learning to
attack anonymization. InSIGKDD, pages 1253Ð1261, 2011.

[16] G. Cormode, C. Procopiuc, E. Shen, D. Srivastava, and T. Yu.
Empirical privacy and empirical utility of anonymized data. In
PRIVDB, pages 77Ð82, 2013.

[17] C. Dwork. Differential privacy. InICALP (2), pages 1Ð12, 2006.
[18] G. Ghinita, P. Kalnis, and Y. Tao. Anonymous publication of

sensitive transactional data.TKDE, 23(2):161Ð174, 2011.
[19] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis. Fast Data

Anonymization with Low Information Loss. InVLDB, 2007.
[20] G. Ghinita, Y. Tao, and P. Kalnis. On the Anonymization of Sparse

High-Dimensional Data. InICDE, 2008.
[21] A. Gkoulalas-Divanis and G. Loukides. Utility-guided clustering-

based transaction data anonymization.TDP, 5(1):223Ð251, 2012.
[22] O. Gkountouna, S. Angeli, A. Zigomitros, M. Terrovitis, and Y. Vas-

siliou. km -anonymity for continuous data using dynamic hierarchies.
In PSD, pages 156Ð169. Springer, 2014.

[23] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. InSIGMOD, pages 1Ð12, 2000.

[24] D. Kifer. Attacks on privacy and deFinettiÕs theorem. InSIGMOD,
pages 127Ð138, 2009.

[25] D. Kifer and A. Machanavajjhala. No free lunch in data privacy. In
SIGMOD, pages 193Ð204, 2011.

[26] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: EfÞcient
Full-domain k-Anonymity. InSIGMOD, 2005.

[27] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian Multi-
dimensional k-Anonymity. InICDE, 2006.

[28] C. Li and G. Miklau. An adaptive mechanism for accurate query
answering under differential privacy.PVLDB, 5(6), 2012.

[29] N. Li, T. Li, and S. Venkatasubramanian. Closeness: A new privacy
measure for data publishing.TKDE, 2010.

[30] J. Liu and K. Wang. On optimal anonymization for l+-diversity. In
ICDE, pages 213Ð224, 2010.

[31] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubrama-
niam. l-Diversity: Privacy Beyond k-Anonymity. InICDE, 2006.

[32] A. Meyerson and R. Williams. On the Complexity of Optimal K-
anonymity. InPODS, pages 223Ð228, 2004.

[33] A. Monreale, R. Trasarti, D. Pedreschi, C. Renso, and V. Bogorny. C-
safety: a framework for the anonymization of semantic trajectories.
TDP, 4(2):73Ð101, 2011.

[34] M. Nergiz, C. Clifton, and A. Nergiz. Multirelational k-anonymity.
In ICDE, pages 1417Ð1421, 2007.

[35] M. Nergiz, C. Clifton, and A. Nergiz. Multirelational k-anonymity.
IEEE TKDE, pages 1104Ð1117, 2009.

[36] M. E. Nergiz, M. Atzori, Y. Saygin, and B. G¬ucü. Towards trajectory
anonymization: a generalization-based approach.TDP, 2(1):47Ð75,
2009.

[37] M. E. Nergiz, A. Tamersoy, and Y. Saygin. Instant anonymization.
ACM Trans. Database Syst., 36(1):2, 2011.

[38] H. Park and K. Shim. Approximate algorithms for k-anonymity. In
SIGMOD, pages 67Ð78, 2007.

[39] P. Samarati and L. Sweeney. Generalizing Data to Provide
Anonymity when Disclosing Information (abstract). InPODS (see
also Technical Report SRI-CSL-98-04), 1998.

[40] L. Sweeney.k-Anonymity: A Model for Protecting Privacy.IJUFKS,
10(5), 2002.

[41] Y. Tao, X. Xiao, J. Li, and D. Zhang. On anti-corruption privacy
preserving publication. InICDE, 2008.

[42] M. Terrovitis, J. Liagouris, N. Mamoulis, and S. Skiadopoulos.
Privacy preservation by disassociation.PVLDB, 5(10), 2012.

[43] M. Terrovitis and N. Mamoulis. Privacy Preservation in the Publi-
cation of Trajectories. InMDM, 2008.

[44] M. Terrovitis, N. Mamoulis, and P. Kalnis. Privacy- preserving
Anonymization of Set-valued Data.PVLDB, 1(1), 2008.

[45] M. Terrovitis, N. Mamoulis, and P. Kalnis. Local and global recoding
methods for anonymizing set-valued data.The VLDB Journal, 2010.

[46] K. Y. X. Xiao and Y. Tao. The hardness and approximation
algorithms for l-diversity. InEDBT, 2010.

[47] X. Xiao, G. Bender, M. Hay, and J. Gehrke. ireduct: differential
privacy with reduced relative errors. InSIGMOD, 2011.

[48] X. Xiao and Y. Tao. Anatomy: simple and effective privacy
preservation. InVLDB, pages 139Ð150, 2006.

[49] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. Fu. Utility-Based
Anonymization Using Local Recoding. InKDD, 2006.

[50] Y. Xu, K. Wang, A. W.-C. Fu, and P. S. Yu. Anonymizing transaction
databases for publication. InKDD, pages 767Ð775, 2008.

[51] M. Xue, P. Karras, C. Ra¬õssi, P. Kalnis, and H. K. Pung. Delineating
social network data anonymization via random edge perturbation. In
CIKM, pages 475Ð484, 2012.

[52] R. Yarovoy, F. Bonchi, L. V. Lakshmanan, and W. H. Wang.
Anonymizing moving objects: how to hide a mob in a crowd? In
EDBT, 2009.

[53] Q. Zhang, N. Koudas, D. Srivastava, and T. Yu. Aggregate Query
Answering on Anonymized Tables. InICDE, pages 116Ð125, 2007.

[54] L. Zou, L. Chen, and M. T.¬Ozsu. K-automorphism: A general
framework for privacy preserving network publication.PVLDB,
2(1):946Ð957, 2009.

Olga Gkountouna is a PhD candidate in
the National Technical University of Athens
(NTUA, Greece), and a member of the
Knowledge and Database Systems Labora-
toryÕs group. Her main research interests lie
in the areas of data privacy, data mining, and
management of semi-structured data. She
is a recipient of the ÕHERACLEITUS IIÕ EU-
funded research fellowship.

Manolis Terrovitis is an associate re-
searcher at the Institute for the Manage-
ment of Information Systems (IMIS) of the
Research and Innovation Centre in Informa-
tion, Communication and Knowledge Tech-
nologies ÓAthenaÓ. He received his PhD in
2007 from the National Technical University
of Athens. His main research interests lie in
the areas of data privacy, indexing and query
evaluation.

