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Abstract. Many organizations, enterprises or public services collect and manage
personal data of individuals. These data contain knowledge that is of substantial
value for scientists and market experts, but carelessly disseminating them can
lead to significant privacy breaches, as they might reveal financial, medical or
other personal information. Several anonymization methods have been proposed
to allow the privacy preserving sharing of datasets with personal information.
Anonymization techniques provide a trade-off between the strength of the pri-
vacy guarantee and the quality of the anonymized dataset. In this work we focus
on the anonymization of sets of values from continuous domains, e.g., numerical
data, and we provide a method for protecting the anonymized data from attacks
against identity disclosure. The main novelty of our approach is that instead of
using a fixed, given generalization hierarchy, we let the anonymization algorithm
decide how different values will be generalized. The benefit of our approach is
twofold: a) we are able to generalize datasets without requiring an expert to define
the hierarchy and b) we limit the information loss, since the proposed algorithm
is able to limit the scope of the generalization. We provide a series of experi-
ments that demonstrate the gains in terms of information quality of our algorithm
compared to the state-of-the-art.

Keywords: Privacy-Preserving Data Publishing, Privacy, km-anonymity, Con-
tinuous data

1 Introduction

Datasets that contain sets of numerical data are frequent in various domains. They might
describe readings from sensors or from human observation, they might represent health
indicators, e.g., measurements of blood pressure, or financial data, e.g., payments.

Consider the example of Table 1, which depicts payments performed by different
users for a service, e.g., recharges of a transport card. If this dataset is published, then
an attacker who has partial knowledge of a record might be able to identify the record
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Name Payments
John {11000, 11000, 20000, 40000, 40000}
Mary {11000, 30500, 40000}
Nick {11000, 11000, 40000, 40000}
Sandy {11000}
Mark {20000}

Table 1. Original Payment data

in the published dataset. For example, Alice may know that John has made a payment
of 11,000 and another one between 18,000 and 22,000. Even if names and unique iden-
tifiers are removed from the published Table 1, Alice will be be able to identify John’s
record in the dataset.

In this work we aim at providing protection against identity disclosure, i.e., to pre-
vent attackers from associating a record in the published dataset with a real person.
We ensure the preservation of user privacy in the published data, by guaranteeing km-
anonymity [1]. km-anonymity ensures that any attacker who knows up to m items of
a target record cannot use that knowledge to identify more than k individuals in the
dataset. This guarantee is a relaxation of the classic k-anonymity [2]. Consider the 22-
anonymous Table 2 which is an anonymization of Table 1. Any attacker with partial
knowledge of up to 2 values of a target, will not be able to identify less than 2 records.
To achieve this level of privacy in our dataset, using the data hierarchy of Figure 1, all
values had to be generalized because values {20,000} and {30,500} were rare. How-
ever, the same privacy can be ensured in Table 3 where values {20,000} and {30,500}
are generalized to the range [20,000-30,500]. As we can observe, less values are gener-
alized and a smaller information loss is achieved.

The basic novelty of our method is that we do not assume a fixed generalization
hierarchy, i.e., an a priori defined hierarchical mapping of the initial domain values
to generalized values, but the anonymization algorithm dynamically explores different
possible ways to anonymized the original domain. It relies on clustering values that
lie closely together and replacing them by the smallest possible range. The benefits
of our approach are twofold: a) the anonymization process does not need a clearly
defined hierarchy, which can be a burden for the data publisher and b) by exploring
a greater solution space, e.g., many different generalization hierarchies, it manages to
significantly limit the information loss due to the anonymization.

Id Payments
1 (10000-20000], (10000-20000], (30000-40000], (30000-40000], (30000-40000]
2 (10000-20000], (30000-40000], (30000-40000]
3 (10000-20000], (10000-20000], (30000-40000], (30000-40000]
4 (10000-20000]
5 (10000-20000]

Table 2. 22-anonymous table using a data generalization hierarchy
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Id Payments
1 11000, 11000, [20000-30500], 40000, 40000
2 11000, [20000-30500], 40000
3 11000, 11000, 40000, 40000
4 11000
5 [20000-30500]

Table 3. 22-anonymous table using a dynamic hierarchy

Our work differs from existing algorithms for km-anonymity [1, 3, 4] because a) it
focuses on continuous values, and not categorical ones as previous approaches, b) it
allows for duplicates in records, i.e., records have bag instead of set semantics and c) it
does not consider a given hierarchy.

Our main contributions include the following:

– We extend the problem of anonymizing set-valued data [1] to collections of itemsets
with continuous values;

– We present the main differences and challenges of applying km-anonymity guar-
antee to our data scenario;

– We propose a utility-preserving km-anonymization algorithm for continuous data
that does not use a fixed generalization hierarchy;

– We evaluate our methods with real-world data and compare our results to the apriori
algorithm of [1], a km-anonymity algorithm using pre-defined data generalization
hierarchies for set-valued data.

The rest of the paper is organized as follows: Section 2 describes the problem and
presents the attack models. In Section 3 we describe our algorithm and the data struc-
tures we use. Section 4 presents the experimental evaluation. Section 5 describes related
work and in Section 6 we express our conclusions and possible future directions of this
work.

2 Problem Definition

Let dataset D be a collection of records t, where each record is a collection of values
v from a continuous domain I . We assume that each record describes a different real
world entity (person).
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Fig. 1. Data Generalization Hierarchy of the data in Table 1.
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We assume attackers that only have partial knowledge of a record, i.e.,m values that
are associated with a real person, and want to identify the whole record in the published
data. We do not make the distinction between sensitive attributes and quasi-identifiers.
Every value is a potential quasi-identifier, and all values are equally sensitive as well.
The km-anonymity [1] guarantee is defined as follows:

Definition 1. (km-anonymity guarantee [1]) A datasetD is considered km-anonymous
if any attacker knowing up to m values of a record t ∈ D, is not able to use this
knowledge to identify less than k records in D.

km-anonymity requires that each record in the dataset is indistinguishable from at
least k−1 others with reference to every possible m-sized combination of its values. In
other words, any attacker who knows of m values that are associated with a person will
always find k records in the published dataset that match her background knowledge.
Unlike traditional k-anonymity, we do not require that records are identical. In the con-
text of sparse multidimensional data, this would introduce great information loss, but it
would also be less significant; it would protect from attackers who know a complete or
almost complete record, which is unnecessary, and it would also protect against attack-
ers who have negative knowledge, i.e., those who know that a value does not appear in
a record. Negative knowledge is a weak quasi identifier in the case of sparse data and it
is not covered by km-anonymity to increase the quality of the anonymized dataset.

A dataset D which is not km-anonymous, can be transformed to km-anonymous
dataset D?, by recoding the values so that D? satisfies the km-anonymity guarantee. To
achieve this, we generalize only those values that are necessary to make every m-sized
combination appear in at least k records, as in Table 3. A generalization is a set of rules
in the form v → [a, b], which map a value v of the original data to a range that includes
it. In this work we use global recoding, i.e., when a value a is generalized to a value A,
then all appearances of value a in the dataset are replaced by A.

There may be many possible anonymizations of a dataset that satisfy km-anonymity
for a given attacker’s knowledge limit m, as shown in Tables 3 and 2. The worst-case
scenario would be to anonymize all values to the maximum domain range I . Such a
solution is possible, but it would introduce the highest information loss and the released
data would practically have no utility.

The problem of finding the optimal km-anonymization is to find the set of general-
izations that satisfy km-anonymity and produce the least information loss.

3 Anonymization algorithm

3.1 Solution Space

The solution space is the set of all possible generalizations. These are all the possible
substitutions of any data value v with a range that contains it. The range can be any
subrange of the domain I . The accepted solutions are those who do not violate km-
anonymity. The problem of optimal multidimensional k-anonymity was proven to be
NP-hard [5]. As we mentioned earlier, our dataset can be represented as a sparse mul-
tidimensional table, while the solution space is much larger than that of k-anonymity.



5

There are two reasons for this; (i) km-anonymity does not need to form equivalence
classes where all records have identical attribute values and (ii) we do not use a gener-
alization hierarchy, therefore the set of possible generalizations is significantly larger.
To deal with the complexity of the optimal anonymization problem we have opted for
a heuristic solution. We take advantage of the apriori principle, and perform global-
recoding generalization on the infrequent values at each step of our algorithm, as we
explain below.

3.2 Dynamic Count Tree

According to the a priori principle, given a frequency threshold k, any itemset of size n
cannot have frequency higher than k if any of its subsets is infrequent. Equivalently, if
an itemset of size n has frequency lower than k, then all its supersets of sizes n+1, n+2,
etc. are also infrequent.

To exploit this property, our algorithm uses a tree structure similar to the FP-tree of
[6]. Every node corresponds to a data value; either original or a generalized range of
values. Nodes at the first level of the tree trace the support of the values, i.e. the number
of tuples that contain the value. A path from the root to a node with depth i, corresponds
to an itemset combination of values of size i. Every node ni in an intermediate level i
holds the support of the combination of values that appear in the path from the root to
ni.

Definition 2. (support) The support of a combination of values in a dataset is the num-
ber of records that contain this combination.

Sibling nodes are sorted by their support in descending order, i.e. more frequent
nodes appear first. At the first step, a node for every value that appears in the dataset is
added to the first level of the tree, as shown in Figure 2(a). At the next step, a new level
of nodes is introduced to the count tree. These are the itemsets of size 2. Itemsets are
also sorted by their support. Therefore, if the value v1 of node n1 is more frequent than
v2 of n2, we expect to find the 2-itemset {v1, v2} in the path n1 → n2. At each step
i of our algorithm, a new level of nodes is introduced to the count tree. Combinations
with common prefixes share a common sub-path in the tree. For instance, itemsets {5,
10, 2} and {5, 10, 1} will share the path 5→10 in the tree. Note that since we allow for
duplicate values in a record, nodes with the same value can appear in the same path.

The goal is for every m-sized combination of values to have support at least k. To
achieve this, following the apriori principle, we progressively examine itemsets of sizes
i=1, 2, ..., m. At each step i, we ensure that the supports of every i-itemset is at least k,
before we proceed to step i+1.

3.3 Information Loss

To estimate the loss of utility introduced by the value generalizations we use the Nor-
malized Certainty Penalty (NCP ) metric [7]. Let v be a value in original domain I .
Then:

NCP (v) =

{
0, v is not generalized
|gmax − gmin|/|I |, otherwise



6

Algorithm 1 Incremental Creation of the Dynamic Count Tree UpdateDCTree
Require: D {Original Dataset}, Ti−1 {tree of size i− 1}, G {current generalizations}
Ensure: Ti is the count tree of height i.
1: for every record t ∈ D do
2: for every value v ∈ t do
3: if ∃ generalization range g ∈ G, such that v ∈ g then
4: replace v with g.
5: for every combination cmbi of i values in t do
6: find path pi−1 that contains (i-1)-subset of cmbi (prefix)
7: if the ith value exists as a leaf then
8: increase its support by 1.
9: else

10: add the remaining ith value as a leaf under pi−1

11: return D?

where [gmin, gmax] is the range to which v is generalized.
The total information loss of an anonymous dataset D∗ with |D∗| records, is the

average NCP of all its values:

NCP (D∗) =

∑
ti∈D∗{

∑
vi,j∈ti NCP (vi,j)}∑
ti∈D∗ |ti|

where vi,j is the jth value in the ith record and |ti| is the size of record the ith record.

3.4 Algorithm

We propose a heuristic global-recoding generalization algorithm. As shown in the pseudo-
code of Algorithm 2, our method hasm basic steps. At each step i = 1, ...,m, our algo-
rithm, ACD, checks for privacy violations of itemsets of size i. To check every possible
i-sized combination of values, we use the count tree created by Algorithm 1.

Each path from the root to a leaf corresponds to an itemset whose support is equal
to the support of that leaf. If a leaf has support less than k, then this value combination
is rare and is considered vulnerable. To protect individuals whose records contain this
itemset, one or more values need to be generalized. The goal is to increase the paths’
support. The only way to achieve this is by generalizing a value enough, so that its
generalization range will include other values belonging to sibling nodes, thus merging
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Fig. 2. (a) Count tree T1 for the dataset of Table1. (b) T1 after the necessary generalization
30,500→[20,000-30,500].
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Algorithm 2 km-Anonymization of Continuous Data algorithm ACD
Require: D {Original Dataset}, m {maximum size of attacker’s knowledge},

k {privacy parameter}, d {NCP threshold}
Ensure: D? is a km-anonymous Dataset.
1: sort tuples’ values with reference to their support.
2: G = ∅
3: T0 = null
4: for i = 1, 2, ..., m do
5: Ti = UpdateDCTree(D,Ti−1, G)
6: for every leaf node f in Ti do
7: if support(f) < k then
8: Gf = findGeneralizations(Ti, f, k, d)
9: add generalization rules: G = G ∪Gf .

10: parse Ti in a breadth-first traversal
11: if there exist sibling nodes with values v1, ..., vn ∈ g, where g ∈ Gf then
12: replace values v1, ..., vn with g
13: merge them into a single node n
14: update n’s support
15: return D?

the node with one of its siblings and combining their supports. If the siblings’ values
appear in different records, then the support of the merged node will be higher than the
supports of the initial nodes. The merged node’s value will be the minimum range that
includes the initial values.

Since we opt for global-recoding, once a generalization rule v → [vmin, vmax]
is decided by the algorithm for a value v, then every other value v′, such that v′ ∈
[vmin, vmax], will also be generalized to the same range in the dynamic count tree, as
shown in lines 10-14 of Algorithm 2. This causes siblings whose values fall in the same
generalization range to be merged together. This happens for nodes in all levels of the
tree as well, thus reducing the tree’s size. Every generalization that has been decided in
the previous steps 1,...,i-1, is kept in a generalization rules set G (line 9) so that they
will also be considered when building the new level i of the dynamic count tree.

The process we follow to find the generalization rules that will cause the least in-
formation loss in the data, is described in Algorithm 3. When a leaf node has a support
lower than k, its siblings are the first to be considered for merging. This is because
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Fig. 3. Count tree T2 for the dataset of Table1.
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they share a common prefix (the path from the root to their common parent), which
is an itemset of size i-1, and its support is ensured to be ≥ k at the previous step of
ACD. Therefore only two values need to be generalized, the values of the leaves. The
function range(v1, v2) in line 11 returns the range between two values. If v1 < v2
then range(v1, v2) = [v1, v2], else range(v1, v2) = [v2, v1]. If the combined support
of the two paths is ≥ k then it is a candidate solution of this problematic itemset. For
every candidate solution we measure the NCP that it would cause and choose the one
that introduces the least distortion to the data. If the candidate solution with the lowest
information loss gives NCP < d, we apply this generalization to the data. Otherwise,
we parse the problematic path upwards to the root. At the next set of candidate general-
izations we are looking for merges of both the leaves and their parent nodes, and so on,
as shown in line 20 of Algorithm 3.

Note that in the worst-case scenario all values will be generalized to the maximum
possible range, i.e., the data domain. Therefore, ACD will always find a km-anonymous
solution to our problem.

Example 1. Consider the dataset of Table 1, let k=2, m=2. Figure 2 a) shows the count
tree T1, of height 1. Value 11,000 appears in records 1, 2, 3 and 4, so its support is 4,
while 30,500 has support 1 as it appears only in record 2. Given k=2, this value must
be generalized. The best generalization range is [20,000-30,500] as it affects less values
in the dataset and thus gives lower NCP than the other options. This generalization is
applied to both node 30,500 and 20,000 that fall in the chosen range. The two nodes are
merged and their combined support is 3>k, as shown in Figure 2(b). In the next step,
we add itemsets of size 2 to the count tree. T2 is shown in Figure 3 where all leaves
have supports at least k. The output of the algorithm is the km-anonymous Table 3.

4 Experimental Evaluation

We evaluated experimentally the performance of our algorithm on real datasets from
the UCI repository [8]. The implementation was done in C++ and the experiments were
performed on an Intel Core 2 Duo CPU at 2.53GHz with 4GB RAM, running Mac OS.

Algorithms. We compare our algorithm to Apriori algorithm (AA) algorithm from
[1]. The AA is the state-of-the-art algorithm for creating km-anonymous datasets using
generalization. It uses a fixed hierarchy and follows the a priori principle: first it cre-
ates a k1-anonymous dataset, then a k2-anonymous, up to km-anonymous. We had to
slightly modify it to accommodate duplicate values in records. We also implemented
AA in the same platform as our main algorithm ACD.

Data. We use the US Census Data 1990 Data Set [9] from UCI data mining repos-
itory. We selected 8 numerical attributes which refer to different types of income. We
treated zeros as nulls and removed them from each record. The active domain ranges
from 0-197297. The dataset contains approximately 2.5M records, but after eliminating
the records that have zero values in all the selected attributes, we are left with approxi-
mately 1M records. The average record size was 2.27.

Parameters. We study the behavior of our algorithm with respect to the following
parameters: a) k parameter of anonymity, b) the limit on attacker’s knowledge m c)
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Algorithm 3 Finds a Generalization that fixes a rare itemset findGeneralizations
Require: Ti {Count Tree}, f {leaf of a vulnerable itemset path},

k {privacy parameter}, d {NCP threshold}
Ensure: generalized path of f will have a support ≥ k.
1: n = f
2: S = ∅
3: Gf = ∅ {Generalization rules}
4: for every sj sibling of node n do
5: S = S ∪ {sj} {merge candidates}
6: for every node sj ∈ S do
7: if the combined support of sj and n is ≥ k then
8: NCPj = NCP ({vn, vsj → range(vn, vsj )})
9: if n is not a leaf then

10: for every node nc in the path from n to leaf f do
11: NCPj = NCPj +NCP ({vnc, vscj → range(vnc, vscj )}) {node scj is de-

scendant of sj , and it is at the same level as nc.}
12: find sj ∈ S such that NCPj is minimum
13: if NCPj < d then
14: g = range(vn, vsj )
15: Gf = Gf ∪ g
16: for every node nc in the path from n to leaf f do
17: g = range(vnc, vscj ) {scj is descendant of sj , and at the same level as nc.}
18: Gf = Gf ∪ g
19: else
20: let node n be f ’s parent
21: goto 2
22: return Gf

NCP threshold d, and d) the dataset size |D|. In every experiment we vary one of these
parameters keeping others fixed. The default setting of our parameters is k = 10, m = 2,
d = 0.001 and |D| = 100000. To provide a fair comparison with AA we created a very
detailed hierarchy which splits the active domain of 0-197297 to ranges of 100 and then
creates a hierarchy with fanout of 2 that is used by AA.

Evaluation Metrics. We evaluate our method with respect to the execution time of
our algorithm in seconds and the information loss in terms of NCP.

Anonymization quality In Figure 4 we depict the performance of the algorithms
in terms of information loss. As k increases, the NCP in both algorithms increases
sublinearly, but ACD causes a loss equal to half to 1/3 of that of AA. As the maximum
size of the attacker’s knowledge m increases, NCP increases superlinearly for both
algorithms. However, for ACD it scales a lot better; the cost of AA rises to triple of that
of ACD as m grows.

The behavior of NCP threshold as d changes is shown in the first graph of Figure 5.
AA is not affected by d, thus we only depict the NCP of AA for the standard parameter
setting (k=10, m=2) for reference. When d is small, ACD offers significantly more util-
ity to the released data. Even when d is close to 1 (i.e., the maximum NCP value) our
algorithm produces similar information loss as AA.
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Fig. 4. Information Loss vs. k and m.

 

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,00001 0,0001 0,001 0,01 0,1 1

In
fo

rm
at

io
n

 L
o

ss
 

d 

ACD AA

 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 200000 400000 600000 800000 1000000

In
fo

rm
at

io
n

 L
o

ss
 

D 

ACD AA

Fig. 5. Information Loss vs. d and |D|.

In the next graph of Figure 5, we vary the dataset size |D|. To perform this ex-
periment we created seven random samples of our dataset of sizes 500,000, 100,000,
50,000, 25,000, 10,000, 5,000, 1,000 records. Each was randomly sampled from the
previous one. Information loss of both algorithms decreases with the dataset size, with
ACD outperforming AA in every dataset.

Execution Time. Figures 6 and 7 demonstrate the computational cost of our algo-
rithm. Execution time is larger for small k values, and decreases monotonically as k
increases. AA is faster than ACD, however the time difference is limited (around 25%)
and insensitive to k.

Execution time grows sublinearly with reference to m for both algorithms, as for
lager m, more itemsets of bigger sizes need to be considered and more levels of the
count trees are needed.

In the next graph we depict the impact of d to running time. While ACD is slow for
very small d, it approximates and slightly outperforms AA for d = 0.0001 and larger.

Finally, the scalability of our algorithm is shown in the second graph of Figure 7.
The curve grows linearly with the dataset size |D| for both algorithms.

In summary, ACD manages to greatly reduce the information loss, with the NCP of
datasets anonymized with ACD being half or one third of the those that are anonymized
with AA in most settings. This comes at the cost of increased CPU cost, but the overhead
is limited to around 20%-40% in most cases.
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5 Related Work

The k-anonymity guarantee [2, 10, 11] was first proposed to protect individuals from
identity disclosure, by demanding that each record in a published dataset should be in-
distinguishable from at least k − 1 others, with respect to the quasi-identifiers. Most
k-anonymization algorithms transform the data through generalization and suppres-
sion [12–21]. Other methods have also been proposed, such as permutation [22], per-
turbation [23, 24], microaggregation [25–27] and bucketization [28, 29, 4]. In general,
k-anonymity is applied in Privacy-Preserving Data Publishing (PPDP) and Privacy-
Preserving Data Mining (PPDM) scenarios. Nevertheless, it can be applied in other
domains such as Privacy-Preserving Collaborative Filtering (PPCF) [30, 31].

A major difference between k-anonymity and our approach is the distinction be-
tween sensitive and non-sensitive values, as well as the assumption that the full set
of QI is known. In our setting the problem is different, since any combination of m
items can be used by an adversary as QIs. Our proposal extends the km-anonymity [1]
and performs generalization without hierarchy on numerical attributes. Mondrian [17]
also generalizes numerical attributes without the use of a hierarchy, however it applies
classic k-anonymity, thus introducing more information loss to the released data.

k-anonymity was proven to be insufficient in preventing attribute disclosure. The
`-diversity guarantee proposed by Machanavajjhala et al. [32] demands that each EC
have at least ` “well-represented” sensitive attribute (SA) values. The `+-diversity [33]
extension sets a different privacy threshold to each SA value in order to reduce infor-
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mation loss. Li et al. [34] proposed t-closeness which requires the distance between a
sensitive attribute distribution in an EC and the global distribution of that attribute to
be no greater than a threshold t. However, t-closeness lacks the flexibility of specify-
ing different protection levels for different sensitive values and uses the Earth Mover
Distance metric that is not suitable for measuring relative loss on individual sensitive
attributes. To address these issues Cao and Karras proposed β-likeness [35].

These extensions of k-anonymity have a negative impact on the utility of the re-
leased data, as they introduce significant distortion. Relaxations of k-anonymity have
been proposed [1, 36–40] aiming to provide a better trade-off between privacy and data
utility. The pioneering work of Ghinita et al. [41] for sparse multidimensional data pro-
posed a permutation method which first performs a grouping on transactions and then
associates each group to a set of diversified sensitive values. In these data scenarios, it
is very unlikely that the adversary has background knowledge of all QIs of his target
[42]. Xu et al. [43] assume that the adversary has a limited knowledge of at most p non-
sensitive attributes, while performing suppression on items that cause privacy leaks, but
they still make the limiting distinction between sensitive and non-sensitive attributes.
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6 Conclusions

In this work we studied the problem of km-anonymizing continuous data without the
use of pre-defined data generalization hierarchies. We proposed ACD, a utility-preserving
global-recoding heuristic algorithm. It greedily selects the best generalization ranges at
each step, ensuring all itemsets of a particular size, at most m, appear at least k times
in the dataset, thus satisfying the km-anonymity guarantee. We evaluated our method
using real world datasets and compared our algorithm to AA [1] which uses generaliza-
tion hierarchies for km-anonymization. Results show ACD preserves significantly more
utility, at a small additional computational cost.

As future work, we plan to extend our solution to more complex attack models
which will include both a partial and an aggregate knowledge [44] on the data values.
We also wish to study km-anonymity under different data models.
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