
Efficient Identification of Implicit Facts in
Incomplete OWL Knowledge Bases

John Liagouris
National Technical University of Athens
liagos@dblab.ece.ntua.gr

Manolis Terrovitis
Institute for the Management of Information Systems

Research Center “Athena”
mter@imis.athena-innovation.gr

28 Feb 2014

Abstract

Integrating incomplete and possibly inconsistent data from various sources is a
challenge that arises in several application areas, especially in the management of
scientific data. A rising trend for data integration is to model the data as axioms in
the Web Ontology Language (OWL) and use inference rules to identify new facts.
Whereas there are several approaches that employ OWL for data integration, there
is little work on scalable algorithms able to handle large datasets that do not fit in
main memory.

The main contribution of the paper is an algorithm that allows using OWL
rules for integrating data in an environment with limited memory. We propose a
technique that exhaustively applies a set of inferences rules on large disk-resident
datasets. To the best of our knowledge, this is the first work that proposes an
I/O-aware method for such an expressive subset of OWL. Previous approaches
considered either simpler models (e.g. RDF) or main memory algorithms. In the
paper we detail the proposed algorithm, prove its correctness, and experimentally
evaluate it on real and synthetic data.

1 Introduction and Motivation
In many application areas there is a need to integrate or curate incomplete data using
expressive rules whose evaluation cannot be easily accommodated in relational data-
bases. Representative examples often arise in the field of scientific data management.
The state-of-the-art practice for addressing such problems is to model the data with the
Web Ontology Language (OWL) [9], a standard of W3C. OWL extends the Resource
Description Framework Schema (RDFS) [8] and allows the definition of assertions,

1

iagouris
Typewritten Text

iagouris
Typewritten Text

constraints, classifications and taxonomies in the form of axioms which are amenable
to automated reasoning procedures. Through the latter, one can extract new facts and
dependencies or even identify inconsistencies. Over the last few years, OWL has been
the basis for a multitude of scientific ontologies like SNOMED CT [14], GALEN [12],
FMA [11], NCI Thesaurus [13], etc., most of which are actively maintained and widely
used by practitioners and researchers in the respective fields.

Our work focuses on the efficient evaluation of complex inference rules on large
sets of ontological axioms that cannot fit in main memory. Axioms in this setting
describe the data and their schema, whereas the inference rules define recursive pro-
cedures that infer additional facts. For example, assume that the information “John is
infected with virus A” is stored in one data source, and in another source there is the
information that (i) “John is infected with virus B” and (ii) “Those that are infected
by both virus A and B become ill”. If we integrate data from both sources, we should
also be able to infer, and add to the final dataset, that “John is ill”. OWL enables users
to specify such axioms, and facilitates data integration by offering reasoning mecha-
nisms for extracting implicit facts. Given an initial set of axioms and a set of inference
rules, the identification of all possible axioms with respect to the rules is known as the
computation of the logical closure [44].

Reasoning with expressive rules on large and complex OWL ontologies is attract-
ing significant interest in data management. OWL is already being used as a tool for
integrating data of any type [23], including relational data [42]. The adoption of OWL
as a mechanism for data integration has been further motivated by the spread of Linked
Data and the support of OWL entailments in the SPARQL language [10]. This trend
implies that OWL reasoning is not only needed for scientific ontologies which may be
small in size (and relatively static), but it has to be performed also on huge volumes of
operational data from various sources. The previous need is clearly reflected in the in-
creasing support of OWL features by commercial RDBMSs like Oracle [45, 26, 32, 21]
and IBM [26]. In this context, the inference tasks must be performed in an I/O-aware
environment where main memory is not infinite. Unfortunately, the state-of-the-art
systems with adequate inference capabilities from the areas of logic programming, de-
ductive databases and semantic web, e.g., YAP [7], DLV [3], LogicBlox [4], OWLIM
[21], Jena [1], etc., are either memory-oriented (and, hence, they cannot scale to large
collections of axioms) or they focus on the evaluation of (partially) bounded queries,
i.e., queries that retrieve information associated with a specific entity in the data, e.g.,
“Find all medical conditions associated with John”.

The contributions of the paper are summarized in the following:

1. We model the logical closure computation as a reachability problem on a graph
that represents the axioms of the ontology, and we propose a semantically oblivi-
ous storage scheme that facilitates the in-bulk application of different inferences
within the same I/O operations. The core idea behind our approach is to establish
a rule-independent pattern for accessing the data and decide on the fly which rule
to perform.

2. We develop a novel method which operates efficiently under a limited mem-
ory budget and computes the logical closure within a series of simple database

2

operations like sort, merge and join. We also show how logical and physical
optimizations can be incorporated in our evaluation scheme.

3. We provide a proof of correctness for the proposed algorithm and its optimiza-
tions.

4. We evaluate our techniques using real and synthetic datasets.

2 Problem Definition
OWL, in its complete form, is very expressive and many important reasoning tasks
have exponential complexity with respect to the size of the data. For this reason, most
existing datasets are expressed in tractable subsets of the language, namely OWL2-EL,
OWL2-RL and OWL2-QL, that have “good” computational properties. In this work,
we focus on a large subset of OWL2-EL, the nominal-safe SROEL [34]. SROEL
supports all features of OWL2-EL except admissible range restrictions, keys and datatypes.
We do not address the previous features here since they are not popular in practice.

For the ease of presentation, the syntax we use here is that of Description Logic
(DL) [18], i.e., the logical formalism behind OWL, and not the syntax of OWL itself.
The notation employed in the paper is depicted in Table 1. Individuals represent the ac-
tual data (instances) and classes have the usual semantics of collections of individuals.
Roles (also known as properties) are relations that associate individuals. The existen-
tial restriction on a class C with a role R (denoted with ∃R.C) is a class itself; ∃R.C
stands for the class of all individuals which are associated with role R to at least one
individual of class C. We refer to C1uC2 and ∃R.C as complex classes. The ∃R.Self
denotes the class of all individuals which are related through role R with themselves
and it is used to express reflexivity.

1.C1 v C2 2.C1 u C2 v C3 3.C1 v ∃R.C2 4.∃R.C1 v C2

5.{a} v {b} 6.{a} v C 7.C v ∃R.Self 8.∃R.Self v C

9.> v C 10.C v ⊥ 11.R1 v R2 12.R1 ◦R2 v R3

Figure 1: Normal Forms of Axioms

Ontologies in SROEL are finite collections of inclusion axioms depicted in Fig.
1. Axioms of types 1-4 model the inclusions between simple and complex classes. An
axiom of type 5 expresses equality between individuals, i.e., the nominal class {b} is
a subclass of {a} (and the reverse) iff a = b. An axiom of type 6 is used to model
class assertions, i.e., a class assertion is expressed as an inclusion of the form {a} v C.
Similarly, a property assertion that associates a with b through role R is equivalent to
the axiom {a} v ∃R.{b} (type 3). Axioms of types 7 and 8 model inclusions involving
the reflexive class of individuals, whereas axioms of types 9 and 10 model inclusions
involving the top and bottom (empty) class. The bottom class is used to declare disjoint
classes as C1 u C2 v ⊥ and inconsistencies as {a} v ⊥ (which often arise through

3

Name Symbol Meaning

Top > The class that contains
all individuals of the ontology

Bottom ⊥ The empty class
Class

C1 u C2

The class that contains
Conjuction all individuals that belong

to both C1 and C2

Existential
∃R.C

The class that contains all
Restriction individuals related with an individual

of class C through property R

Reflexivity ∃R.Self
The class that contains all
individuals related with

themselves through property R

Nominal {a} The class that contains
only the individual a

Class Inclusion
C1 v C2

If an individual is of type C1

(SubClassOf) then it is also of type C2

Property Inclusion R1 v R2

If two individuals are related
through property R1 then they

are also related through property R2

Complex

R1 ◦ R2 v R3

If an individual a is
Property related with b through R1 and b
Inclusion is related with c through R2

then a is related with c through R3

Table 1: Symbols and Terminology

the inference). Finally, axioms of types 11 and 12 denote the inclusions between roles.
Note that a class C can be a nominal class in the axioms of Fig. 1 but not when it
appears on the right side of an axiom; the right part of an inclusion can be a nominal
{a} only when the left part is also a nominal (type 5). Ontologies with this restriction
are found in the literature as nominal-safe [30]. The reason we distinguish axioms
of types 5 and 6 from those of type 1 is because there are inference rules that apply
specifically on them (we explain this below).

Let us consider the small ontology of Fig. 2. NotVaccinated, InfectedWithVirusA,
Ill, VaccineTypeX and Vaccinated1994 are simple classes, InfectedWithVirusA u Not-
Vaccinated and ∃Vaccinated. VaccineTypeX are complex classes, Vaccinated is a role,
and john and va are individuals (expressed as nominal classes). Assume that axioms 1,
2, and 3 come from a data source A which contains a series of scientific facts. Axiom 1
states that patients who are infected with Virus A (InfectedWithVirusA) and are not vac-
cinated (NotVaccinated) are ill (Ill). Axiom 2 states that all those who have been vac-
cinated with an inefficient vaccine of type VaccineTypeX (∃Vaccinated.VaccineTypeX)
should be treated as not vaccinated. Finally, axiom 3 denotes that the vaccine va is of
type VaccineTypeX. Now consider that axioms 4 and 5 come from a data source B that
has the medical history of patients and states that john belongs to a group of people
who have been vaccinated in 1994 (Vaccinated1994) and that he is infected with virus
A. Axiom 6 is added by an expert and states that all people who had been vaccinated

4

Source A 1. InfectedWithVirusA u NotVaccinated v Ill
Source A 2. ∃Vaccinated.VaccineTypeX v NotVaccinated
Source A 3. {va} v VaccineTypeX
Source B 4. {john} v Vaccinated1994
Source B 5. {john} v InfectedWithVirusA
Expert 6. Vaccinated1994 v ∃Vaccinated.{va}

Figure 2: Integration example

in 1994 where vaccinated with vaccine va. From the previous example it is easy to
see that additional data can be inferred and added into the integrated dataset; from the
data of the two sources we can infer that John is ill, since he has been infected with
virus A and he has been vaccinated in 1994 when everyone was vaccinated with the
inefficient vaccine va of type VaccineTypeX. The detection of all such additional data or
the existence of possible inconsistencies and discrepancies between data from different
sources is achieved through the iterative application of a set of inference rules.

For SROEL, these rules are depicted in Fig. 3. When the axioms that match the
body of a rule (antecedent) are found in a collection of axioms, let D, then the axiom
in the head of the rule (consequent) is true and can be added to D. The exhaustive
application of the rules until no additional axioms can be produced, i.e., until no axioms
that are not already in D are inferred (fix-point), is known as the computation of the
logical closure. The result of this process is a dataset D′ such that D ⊆ D′.

IR1 C1 v C3 ← C1 v C2 ∧ C2 v C3

IR2 C1 v C4 ← C1 v C2 ∧ C1 v C3 ∧ C2 u C3 v C4

IR3 C1 v ∃R.C3 ← C1 v C2 ∧ C2 v ∃R.C3

IR4 C1 v C4 ← C1 v ∃R.C2 ∧ C2 v C3 ∧ ∃R.C3 v C4

IR5 C1 v ∃R2.C2 ← C1 v ∃R1.C2 ∧ R1 v R2

IR6 C1 v ∃R3.C3 ← C1 v ∃R1.C2 ∧ C2 v ∃R2.C3 ∧ R1 ◦R2 v R3

IR7 C1 v ⊥ ← C1 v ∃R.C2 ∧ C2 v ⊥
IR8 C1 v ∃R3.C2 ← C1 v ∃R1.Self ∧ C1 v ∃R2.C2 ∧ R1 ◦R2 v R3

IR9 C1 v ∃R3.C2 ← C1 v ∃R1.C2 ∧ C2 v ∃R2.Self ∧ R1 ◦R2 v R3

IR10 C v ∃R3.C ← C v ∃R1.Self ∧ C v ∃R2.Self ∧ R1 ◦R2 v R3

IR11 C1 v ∃R.Self ← C1 v C2 ∧ C2 v ∃R.Self
IR12 C1 v ∃R2.Self ← C1 v ∃R1.Self ∧ R1 v R2

IR13 C1 v C2 ← C1 v ∃R.Self ∧ ∃R.Self v C2

IR14 C1 v C3 ← C1 v ∃R.Self ∧ C1 v C2 ∧ ∃S.C2 v C3

IR15 {a} v ∃R.Self ← {a} v ∃R.{a}
IR16 {b} v {c} ← {a} v {b} ∧ {a} v {c}

Figure 3: Inference Rules (∧ stands for logical AND)
In the following we describe each inference rule of Fig. 3:

• Rule IR1 states that if a class C1 is a subclass of C2 and C2 is a subclass of C3,
then C1 is also a subclass of C3.

5

• Rule IR2 states that if a class C1 is a subclass of C2 and C3, and the intersection
of C2 and C3 is a subclass of C4, then C1 is also a subclass of C4 (since it
belongs to both C2 and C3).

• Rule IR3 states that if a class C1 is a subclass of C2 and all individuals in C2 are
related through role R with at least one invidual of C3, then all individuals of C1

are also related through role R with at least one individual of C3 (C1 v ∃R.C3).

• Rule IR4 states that if (i) all individuals of C1 are related through role R with
at least one individual of C2 which is a subclass of C3, and (ii) all individuals
which are related through R with at least one individual of C3 are of type C4,
then we can infer that C1 is a subclass of C4 (all of its individuals are of type
C4).

• Rule IR5 states that if all individuals of a class C1 are related through role R with
at least one individual of C2, then they will be related with at least one individual
of C2 through all superroles of R. This inference is based on the definition of
subroles (see Table 1).

• Rule IR6 states that if (i) all individuals of a class C1 are related through role R1

with at least one individual of C2, (ii) all idividuals of C2 are related through R2

with at least one individual of C3, and (iii) the role chain R1 ◦ R2 v R3 exists
in the ontology, then we can infer that all individuals of C1 are related through
R3 with at least one individual of C3. This inference comes from the definition
of role chains (see Table 1).

• Rule IR7 states that if all individuals of a class C1 are related through R with
at least one individual of C2, and C2 is a subclass of ⊥, i.e., it cannot contain
any individuals, then C1 must also be empty. This inference comes from the
definition of the ⊥ class and it helps identifying contradictions in the ontology.

• Rule IR8 states that if (i) each one of the individuals of C1 is related with itself
through R1, (ii) all individuals of C1 are related through R2 with at least one
individual of C2, and (iii) the role chain R1 ◦ R2 v R3 exists in the ontology,
then all individuals of C1 are also related through R3 with at least one individual
of C2.

• Rule IR9 states that if (i) all individuals of C1 are related through R1 with at
least one individual of C2, (ii) each one of the individuals of C2 is related with
itself through R2, and (iii) the role chain R1 ◦ R2 v R3 exists in the ontology,
then all individuals of C1 are also related through R3 with at least one individual
of C2.

• Rule IR10 states that if (i) each one of the individuals of C is related with itself
through R1 and also through R2, and (ii) the role chain R1 ◦ R2 v R3 exists in
the ontology, then all individuals of C are also related through R3 with at least
one individual of C.

6

• Rule IR11 states that if a class C1 is a subclass of C2 and each individual in C2

is related through role R with itself, then each individual of C1 is also related
through role R with itself.

• Rule IR12 states that if each individual of class C1 is related through role R with
itself, then it is also related with itself through all superroles of R.

• Rule IR13 states that if (i) each individual of C1 is related through role R with
itself, and (ii) all individuals which are related through R with themselves are of
type C2, then we can infer that C1 is a subclass of C2 (all of its individuals are
of type C2).

• Rule IR14 states that if (i) each individual of C1 is related through role R with it-
self, (ii) C1 is a subclass of C2, and (iii) all individuals which are related through
R with at least one individual of C2 are of type C3, then we can infer that C1 is
a subclass of C3 (all of its individuals are of type C3).

• Rule IR15 states that if an individual is related with itself through role R, then
it belongs to the class that contains all individuals which are related with them-
selves through R.

• Rule IR16 states that if a nominal {a} is defined as a subclass of a nominal {b}
and also of a nominal {c}, then {b} is also a subclass of {c} (and the reverse).
This rule is used to capture the equivalence relation between individuals (a = b)
which may be defined in the ontology as {a} v {b} or {b} v {a} or even with
both these axioms (redundancy).

Rules like IR1, IR3 and IR11 define (generalized) transitive closures [28], and if
the logical inferences were limited to them, existing evaluation methods from database
research would be sufficient to address the problem [44]. The complexity of inferences
is increased by the fact that the majority of the rules are mutually recursive [20], either
directly (when a rule creates axioms that participate in the body of another rule and vice
versa, e.g, IR3 and IR4), or indirectly (when a rule affects another through a third rule
and vice versa, e.g., rules IR1 and IR6 through IR3 and IR4). In addition, rules like
IR2 introduce more complex dependencies. Although simple transitive closure can be
evaluated in a single pass over the data [15], such complex reasoning operations incur
multiple passes; hence, for large-scale ontologies with millions of axioms (implicit or
explicit), the problem becomes I/O-bounded.
Discussion. This work focuses on the logical closure of the rules in Fig. 3, and in
the rest of the paper we only discuss its efficient evaluation in an environment with
limited memory. Still, the rules we present here are tightly associated with a very
important reasoning task in OWL which is known as classification [18, 17]. Classifi-
cation amounts to the identification of all direct inclusions between the named classes
of the ontology, e.g., NotVaccinated, InfectedWithVirusA, Ill, VaccineTypeX and Vac-
cinated1994 in the example of Fig. 2. Besides the closure computation, this process
requires two more steps in order to be performed correctly: a) the normalization of
the input axioms that is performed before applying the rules, and b) the final reduction

7

phase that extracts the direct class inclusions from the closure. The most expensive
part of classification is by far the computation of the logical closure, hence, the results
of our work can be also exploited in this setting. To this end and because the rules of
Fig. 3 are complete with respect to classification only when the dataset is normalized,
we bring the input axioms in normal form before applying the rules. In fact, Fig. 1 de-
picts the normalized axioms, that is, each symbol Ci refers to a class name (and not a
complex class) like in the example of Fig. 2. For more details about the normalization
and the transitive reduction phases, see [33] and [31].

3 Data modeling
Our approach adopts a semantically oblivious representation of the ontology based on
a graph model, i.e., we model D as a graph with a small collection of metadata, and
then store its edges in a relational table. Specifically, the majority of axioms in D,
that is, all axioms except those of type 2, 11 and 12, are modeled as a directed labeled
multigraph G(V,E, lV , lE), where:

• V is the set of nodes. There is one node for each class in D, including > and ⊥.
We also consider a special node having the label Self.

• E is the set of edges. There is one edge for each (different) axiom in D except
for axioms of type 2, 11 and 12.

• lV = NC ∪ NI ∪ {Self} ∪ {Top} ∪ {Bottom} is the set of node labels. NC and
NI are the sets of class and individual names in D. Top and Bottom are the labels
of the nodes referring to the classes > and ⊥ respectively.

• lE = NR− ∪NR+ ∪{subClassOf} is the set of edge labels. N+
R is a set of labels

produced by the concatenation of a property name with the symbol +. Such
labels are created for each property R appearing in an axiom of type 3 or 7. NR−

is produced similarly for the properties appearing in axioms of type 4 or 8. The
use of subClassOf label is explained below.

Intuitively, for each class that appears in D we create a node in G having as label
the name of the class. Then, for each axiom we add an edge to G, depending on the
axiom type (Tx), as follows:

T1 C1 v C2 is represented by a subClassOf edge from node C1 to node C2.

T3 C1 v ∃R.C2 is represented by an edge from from node C1 to node C2, marked
with label R+.

T4 ∃R.C1 v C2 is represented by an edge from node C1 to node C2, marked with
label R−.

T5 {a} v {b} is represented by a subClassOf edge from node a to node b.

T6 {a} v C is represented by a subClassOf edge from node a to node C.

8

Figure 4: Graph of Running Example

T7 C v ∃R.Self is represented by an edge from node C1 to the unique node Self,
marked with label R+.

T8 ∃R.Self v C is represented by an edge from the unique node Self to C, marked
with label R−.

T9 > v C is represented by a subClassOf edge from the unique node Top to node
C.

T10 C v ⊥ is represented by a subClassOf edge from node C to the unique node
Bottom.

Axioms of type 2, 11 and 12 are not modeled directly in the graph; they are kept
separately as metadata since their semantics are very different from those of the rest of
the axioms and they cannot be represented in an intuitive way on the graph.

The graph for our running example is provided in Fig. 4. The metadata (axioms
of type 2, 11 and 12) are depicted on the upper right corner. Each non-dashed edge
corresponds to an explicit axiom, i.e., an axiom that exists in D from the beginning.
The edges (axioms) added by the inference are shown with dashed lines. Next to each
such edge we also denote the inference rule that created it. Each axiom, except axiom
1 which is represented in the metadata, introduces an edge between the nodes of the
graph. Axioms 3,4 and 5 introduce subClassOf edges, while axiom 2 introduces a
Vaccinated− edge (since Vaccinated appears in the left side of the inclusion in axiom
2). Axiom 6 introduces a Vaccinated+ edge. Using IR4 on axioms 6, 3 and 2 we get
a new axiom Vaccinated1994 v NotVaccinated, which is represented by a dashed edge
on the graph. This axiom, together with axiom 4 satisfy IR1, so an additional axiom
{john} v NotVaccinated is added. This last axiom, along with axioms 1 and 5, satisfies
IR2, so a final axiom {john} v Ill is added to the original data. We point out that each

9

inference rule can only add edges to the graph G, so the set V of nodes remains the
same and no additional axioms are added to the metadata.

Within our model, most inference rules of Fig. 3 can be evaluated by considering
only: (i) the incoming and outgoing edges of each node, (ii) the source and end nodes
of these edges, and (iii) the metadata of G (depicted on the up-right part of Fig. 4).
In other words, rule application is reduced into examining at most 2-hop paths in G.
For instance, IR6 requires two hops: from C1 to C2 through R1 and from C2 to C3

through R2 (the axiom R1 ◦ R2 v R3 of type 12 belongs to the metadata). The
only exception is rule IR4 which requires 3 hops: from C1 to C2 through R, from
C2 to C3 through subClassOf, and from C3 to C4 through R−. The aforementioned
property is crucial for the design of an I/O-aware evaluation algorithm; it implies that,
if we traverse the graph node by node (i.e., retrieve all edges associated with a specific
node), we can correctly produce all axioms implied by the rules of Fig. 3 in this part of
the graph. In other words, a single application of all inference rules on the dataset can
be consistently performed within the same scan, provided that this scan proceeds node
by node. To compute the complete logical closure, the new edges have to be added to
the graph and the process must be repeated until no new edges are created.

3.1 Storage Scheme
The graph G and its metadata are stored in five relations:

RG Relation RG contains all edges that comprise the graph G except those that cor-
respond to axioms of type 4 and 8. RG has four fields: (i) R which contains the
edge label, (ii) C1 which stands for the source node, (iii) C2 which stands for the
target node, and (iv) a 4-bit field T which contains additional information about
the edge. The three less important bits (23=8) in T are used for denoting the type
of the axiom the edge corresponds to, whereas the more important bit is used by
the algorithm as we explain in the following sections1. In practice, relation RG

contains the largest part of the data. It is also the only relation that is expanded
with new tuples during the logical closure computation.

R2 Relation R2 contains all axioms of type 2 (C1u C2 v C3). It has three fields,
one for each class that appears in the axiom: (i) C1 for the first conjunction class,
(ii) C2 for the second conjunction class, and (iii) C3 for the subsumer class.

R11 Relation R11 stores all axioms of type 11 (R1 v R2) and has two fields: (i) R1

for the subsumee, and (ii) R2 for the subsumer property.

R12 Relation R12 stores all axioms of type 12 (R1◦ R2 v R3) and has three fields:
(i) R1 for the first property in the chain, (ii) R2 for the second property, and (iii)
R3 for the subsumer property.

R48 Relation R48 stores all edges corresponding to axioms of type 4 and 8, i.e.,
∃R.C1 v C2 and ∃R.Self v C. It has three fields: (i) R which is the edge

1Note that we only need 3 bits for the axiom types since four types of axioms in Fig. 1 are stored in
seperate relations.

10

 ⋈ eℓ

i+1 i+1

.

.

.

i i∆RG

RG RG

´

´

´

∆RG

∆RG ∆RG

Static Relations

C1 R C2

1 8 11

6 6 7

… … …

R1 R2

0 3

3 4

… …

C1 C2 C3

7 8 14

9 2 5

… … …

R1 R2 R3

1 11 4

15 3 12

… … …

R48

R12

R11

R2

The Schema Σ

T C1 R C2

0001 7 2 8

1011 9 4 11

… … … …

T C1 R C2

1111 1 0 6

0110 13 2 7

… … … …

T C1 R C2

1101 1 2 5

1101 13 2 3

… … … …

T C1 R C2
1011 25 43 12

1001 4 2 14

… … … …

Figure 5: Data model for D

label, (ii) C1 which is the source node (for axioms of type 8 this is the Self
node), and (iii) C2 which is the target node.

The overall schema Σ is illustrated in Fig. 5. Note that classes in all tuples are
represented by integer IDs. The R′G relation is temporary and it is created by the
algorithm we present in Section 4. The schema of Fig. 5 is a 1-1 representation of
the axioms of Fig. 1. This is straightforward for axioms of types 2, 11 and 12 which
get separate tables. For axioms 4 and 8, the homogenous representation in table R48

leads to a 1-1 mapping since they are syntactically the same. For the rest of the axioms
stored in RG, the T attribute (which encodes the type of the axiom) guarantees that the
mapping is 1-1.

The main motivation behind our algorithm and the proposed storage scheme is to
reduce the I/Os and, especially, the random I/Os. Our goal is to access the data on
disk as few times as possible and to perform these accesses mainly with sequential
scans of the underlying relations. In Section 3, we noted that the inference rules can
be completely evaluated by “looking” only in a neighborhood of the graph. We further
observed that if we cluster all axioms that contain a certain class (i.e., all incoming and
outgoing edges of a node in the graph), then we can evaluate most inference rules of
Fig. 3 consistently. To this end, we propose storing most of the axioms represented
by the graph in a single relation RG which is sorted on the class IDs (RG is sorted on
C1 whereas its copy R′G is sorted on C2 - cf. Fig. 5). This enables us to efficiently
retrieve all edges that are associated with a class (i.e., a node) and perform on them
all applicable rules in bulk. The previous property is exactly what we exploit in our
approach; the algorith we present in Section 4 retrieves tuples from the sorted RG (and
its copy R′G) in contiguous blocks (as many as the input buffers allow), and minimizes
the random I/Os because all these blocks (probably except the first one) are fetched
in memory with sequential accesses on disk. Moreover, note that the axioms we store
in RG (and R′G) are those appearing in the head of at least one rule (the remaining
axioms are kept in separate relations). Intuitively, this means that the algorithm will
update only these two relations at each step of the iteration (with the use of deltas),
minimizing in this way also the random writes to disk.

11

Still, some rules are not completely evaluated by accessing only RG and R′G. The
rest of the relations in the schema of Fig. 5 (R2, R48, R11 and R12) have to be accessed
to retrieve axioms of types 2, 4, 8, 11 and 12. The reasons these axioms are kept in
separate relations are the following:

• Rules IR2, IR4, IR6, IR8, IR9, IR10 and IR14 have three predicates in their
bodies and their evaluation requires a 3-way join. Thanks to the additional static
relations, the 3-way joins required by the previous rules are evaluated by per-
forming only 1 join between the large relations RG and R′G; the additional join
is always with one of the other small relations.

• Axioms stored in R2 (C1 u C2 v C3), R11 (R1 v R2) and R12 (R1 ◦ R2 v
R3) are not represented as edges in the graph, hence, they participate in joins
which have very different join conditions from the joins between the rest of the
axioms. All other axioms contain two classes (one on each side of v) on which
the relations R′G and RG are sorted. Axioms of R2, R11 and R12 cannot benefit
from such sorting, so inserting them in RG and its copy R′G would only make
their retrieval more expensive.

• The axioms of type 2, 4, 8, 11 and 12 do not appear in the head of any rule.
This means that keeping them separately from the rest of the axioms will not
introduce additional random disk writes because the corresponding relations are
static, i.e., they are not updated by the inference.

Note that traditional algorithms which evaluate each rule of Fig. 3 independently,
access the underlying database on a per-rule basis and cannot benefit from the previous
schema. At each iteration step, these algorithms examine only axioms that are related
to a specific rule. In case they encounter other types of axioms in the relation they scan,
they simply omit them. Hence, storing different types of axioms in the same relation
(like in RG) will only result in redundant I/Os for them.

4 Overview of the Algorithm
The salient feature of our approach is that the rules of Fig. 3 are evaluated in bulk over
the schema Σ of Fig. 5. The proposed Batch Rule Application (BRA) algorithm is
equivalent to a semi-naive evaluation [44] of each rule in isolation, i.e., the combina-
tions of tuples which have been considered in a previous step of the iteration are never
checked again under the same rule.

As mentioned in Section 3, applying the rules of Fig. 3 on G requires the exam-
ination of at most 2-hop paths (3-hop for IR4) and a lookup in the metadata. On the
schema Σ, this can be done by performing (i) a self-join of the form RG 1C2=C1

RG

(for identifying the 2-hop paths), and (ii) a subsequent join of the intermediate tuples
with one of the static relations R2, R11, R12, and R48 (depending on the particular
rule). To avoid the increased random disk page accesses of the self-join, we adopt the
following strategy. First, we ensure the semi-naive evaluation by keeping the new tu-
ples in a temporary relation ∆RG. Instead of inserting ∆RG into RG and then perform
a self-join on RG as a naive algorithm would do, we join ∆RG with RG and insert the

12

Algorithm: BRA
Input : The schema Σ={RG, R2, R11, R12, R48} populated with the initial tuples;
Output : The logical closure of the rules in Fig. 3;

1 initialize relations;
2 let ∆R′iG be the left delta relation and ∆Ri

G be the right delta relation at step i (see also
Fig. 5);

3 i = 0;
4 R′iG 1el R

i
G ; //output sent to ∆Ri+1

G and ∆R′i+1
G

5 while |∆R′i+1
G | ! = 0 or |∆Ri+1

G | ! = 0 do
6 i++;
7 sort the right ∆Ri

G on C1 and remove duplicates;
8 sort the left ∆R′iG on C2 and remove duplicates;

//remove old tuples from the right delta

9 ∆Ri
G ←− ∆Ri

G\ Ri−1
G ;

//remove old tuples from the left delta

10 ∆R′iG ←− ∆R′iG\ R′i−1
G ;

11 R′i−1
G 1el ∆Ri

G; //output sent to ∆Ri+1
G and ∆R′i+1

G

12 merge ∆Ri
G with Ri−1

G into Ri
G so that the relation remains sorted on C1;

13 ∆R′iG 1el R
i
G ; //output sent to ∆Ri+1

G and ∆R′i+1
G

14 merge ∆R′iG with R′i−1
G into R′iG so that the relation remains sorted on C2;

15 return Ri
G

first into the latter afterwards. Second, the join between ∆RG and RG is designed so
that all rules are checked when a node neighborhood of G is fetched from disk. This
means that the rules are applied in bulk within each scan of the dataset and we do not
have to perform different scans for applying different rules. We provide details on this
in Section 4.1. The overall procedure is depicted in Algorithm BRA. In the following
we describe its high-level steps.

Initialization. The algorithm assumes a limited space of size M in main memory.
First, it creates a copy R′G of RG on disk. This allows to avoid the expensive self-join
on RG and instead of it to perform an initial join between R′G and RG. As we show
later on, the same replication is followed for the delta relation, that is, at each step of
the iteration we have a copy of ∆RG denoted as ∆R′G. In order to enable efficient
merge-joins, R′G is sorted on the attribute C2 whereas RG is sorted on C1. Finally,
a hash index is created for each static relation: R2 is hashed on C1, R11 on R1, R12

on R1, and R48 on C1 (these attributes are highlighted in Fig. 5). Each one of the
previous operations utilizes the entire available memory M . When the initialization
is completed, M is used by the algorithm for fetching tuples of RG, R′G, ∆RG, and
∆R′G (all of which are disk resident) and for the output buffers.

Evaluation. The first step of the algorithm is to join the relations RG and R′G
(line 4) according to the operator 1el that applies all inference rules together. We term

13

this join el-join and describe its details in Section 4.1. The new tuples created by the
application of the rules are stored in ∆RG (which is sorted on C1) and ∆R′G (which
is sorted on C2). In the baseline version of our algorithm, ∆RG and ∆R′G contain
exactly the same tuples (sorted in a different order), but in Section 5 we show how we
can prune tuples from the deltas. After the initial creation of ∆RG and ∆R′G in line 4,
the algorithm starts its main loop (lines 5-14) which terminates when no new tuples are
produced (condition in line 5). Since the main relations are updated at each iteration,
we use Ri

G and R′iG to denote the relations RG and R′G at the i-th step of the algorithm.
Similarly, ∆Ri

G and ∆R′iG are used for ∆RG and ∆R′G.
Each step of the algorithm breaks into a sequence of simple database operations:

(i) sorting, (ii) set difference, (iii) join, and (iv) merging as in a typical semi-naive
evaluation. At step i ≥ 1, Ri−1

G and R′i−1G are already sorted in the previous step
(i− 1), so we only need to sort ∆Ri

G and ∆R′iG. The latter are sorted on the attributes
C1 and C2 respectively2, and their duplicates (with respect to all attributes) are removed
during this process (lines 7-8). Then, two set-difference operations are performed in
order to remove the “old” tuples existing in the deltas: one between ∆Ri

G and Ri−1
G

(line 9), and another one between ∆R′iG and R′i−1G (line 10). After that, ∆Ri
G is joined

with R′i−1G (line 11), and then it is merged with Ri−1
G into the relation Ri

G (line 12)
so that the latter remains sorted on C1. Analogously, ∆R′iG is joined with Ri

G (line
13), and then it is merged with R′i−1G into the relation R′iG (line 14) so that the latter
remains sorted on C2. Note that ∆R′iG is joined with Ri

G, not Ri−1
G , which implies a

join of ∆R′iG with both Ri−1
G and ∆Ri

G (see also Fig. 5). All tuples produced by the
two el-joins are stored in the relations ∆R′i+1

G and ∆R′i+1
G which are used in the next

step. When the loop is over, the logical closure of the rules is contained in RG.

4.1 The el-join operator
The el-join is the core of the algorithm we propose. It is a complex operator which
breaks the evaluation of each rule into smaller operations shared with other rules. Fol-
lowing a multi-query optimization paradigm [41], the common join predicates in the
bodies of the rules are batched and evaluated all together in groups, so that a significant
number of redundant I/Os is avoided. Conceptually, the application of a rule in this
setting may be postponed till other rules are evaluated, and continue again later on as
we scan the dataset. This aspect is very similar to the notion of eddies [16], however,
the latter focus on join re-ordering whereas in our case the dynamic scheduling of the
rules is simply determined by the type of the tuples fetched from disk.

The basic operations in the evaluation of the rules are the joins between the different
relations. The most expensive joins are those involving RG and R′G. We have two
types of such joins. The first is R′G 1R′G.C2=RG.C1∧R′G.T=f(RG.T) RG and the second
is the self join RG 1RG.C1=RG.C1∧RG.T=f(RG.T) RG, where f is a matching function
that decodes the attribute T in order to determine the applicable rule. Intuitively, the
first type of join creates pairs of incoming and outgoing edges of a node C1, whereas

2In fact, the attributes C1 and C2 are only the primary attributes of sorting. Since we need to remove the
duplicates as well, the remaining attributes of the relations are also taken into account in sorting but we omit
them here to simplify the presentation.

14

the second type combines all outgoing edges of a node C1. Based on the common
operations in different rules, we partition the rules into the following classes:

• Class 1 contains the rules IR5, IR12 and IR13. To evaluate these rules we need
to examine every edge labeled with a role R on the graph, and the complex
roles from the metadata. This is translated into a join between RG and the static
relations R48 and R11.

• Class 2 contains the rule IR15 that only needs to examine each node separately,
so we only have to scan RG.

• Class 3 contains rules IR2, IR8, IR10 and IR14. These rules require examining
all the pairs of outgoing edges for each graph node C1 and also the metadata.
This is reflected to a self-join of the second type and joins with the static rela-
tions.

• Class 4 contains rule IR16 that requires examining all pairs of outgoing edges
for each node, but not the metadata.

• Class 5 contains rules IR1, IR3, IR7 and IR11, which require examining every
pair of incoming and outgoing edges for each node C1. This is translated into a
join of the first type between RG and R′G.

• Class 6 contains the rules IR4, IR6 and IR9. IR4 requires examining chains of
three edges in the graph where the last edge is of type 4 (∃RG.C1 v C2) that is
stored in R48. IR6 and IR9 require the examination of all pairs of incoming and
outgoing edges for a node and also the examination of the metadata for complex
roles. In all cases, the evaluation requires a join of the first type between RG and
R′G, and a join of the results with the static relations; with R48 for IR4, and with
R12 for IR6 and IR9.

The way the operator works is depicted in the Algorithm el-JOIN. The input rela-
tions S and P refer to the left and right relations in lines 4, 11 and 13 of the algorithm
BRA. Hence, S stands for one of R′0G, R′i−1G and ∆R′iG, whereas P for one of R0

G,
∆Ri

G and Ri
G. The output of the operator are the relations ∆R′i+1

G and ∆Ri+1
G . Let

U and Q be the in-memory buffers for the relations S and P respectively. In sum, the
el-join applies the rules within a carefully designed merge-join between S and P (lines
2-16), and completes the evaluation with interleaving joins between streams of tuples
and the static relations of Σ. Recall that the relations S and P are already sorted on the
join attributes C2 and C1. The term trigger is used in the pseudocode for all rules that
include an “external” join with the static relations (R2, R11, R12, R48). Triggering a
rule means that the respective tuples are pushed to the sub-operators that perform the
external joins. This is done directly as we scan relation P (for rules of Class 1) or
after partially applying a rule of Class 3 and 5. In the former case, the tuples sent to
the sub-operators come from P , whereas in the latter case they are intermediate tuples
produced by the partial application of the rules. A rule is applied partially when some
(and not all) of the axioms in its body are checked. For example, we say that IR6 is
partially applied when we perform only its first join (C1 v ∃R1.C2 ∧ C2 v ∃R2.C3)

15

as shown in Fig. 3. The remaining rules (Classes 2 and 4) are evaluated as a whole
within the main merge-join.

Algorithm: el-JOIN
Input : relations S, P,R2, R11, R12, R48;
Output : relations ∆Ri+1

G and ∆R′i+1
G ;

vars : U , Q: buffers;

1 let U and Q be the memory buffers for S and P respectively;

2 while there are tuples to join on S.C2 = P.C1 do
3 identify the minimum C1 value in Q, let minQ;

4 for each unconsidered tuple t ∈ Q:t.C1 = minQ do
5 trigger active rules of Class 1; //IR5, IR12, IR13

6 apply active rules of Class 2; //IR15

//self join on P
7 for each unconsidered pair of tuples (t1, t2):t1, t2 ∈ Q and t1.C1 = t2.C1 = minQ

do
8 trigger active rules of Class 3; //IR2,IR8,IR10,IR14

9 apply rules of Class 4; //IR16

//join S and P
10 for each unconsidered pair of tuples (t1, t2):t1 ∈ U, t2 ∈ Q and

t1.C2 = t2.C1 = minQ do
//read as many blocks of S and P needed

11 apply rules of Class 5 ; //IR1, IR3, IR7, IR11

12 trigger rules of Class 6; //IR4, IR6, IR9

13 if no unconsidered tuples exist in U and Q then
14 if Q has to be reloaded and there are active rules in Class 3 then
15 shift tuple(s) in Q with the maximum C1 value to the beginning of the

buffer;

16 reload U and/or Q with the next block(s) of tuples;

17 if there are active rules in Classes 1, 2, 3 and 4 then
18 while P is not exhausted do
19 repeat lines 3-8;

20 remove from Q the tuples checked under all active rules in Classes 1, 2, 3 and 4;

21 if there are active rules in Class 3 then
22 shift tuple(s) in Q with the maximum C1 value to the beginning of the

buffer;

23 reload Q with the next block(s) of tuples;

The operator starts by filling the buffers U and Q with tuples from S and P . It

16

works on groups of tuples having a common value for the Q.C1 attribute (minQ) and
proceeds as follows. First, it checks whether a rule of Class 1 should be triggered or ap-
plies rules of Class 2 (lines 4-6). Then, it partially applies rules of Class 3 by perform-
ing a self join on Q.C1 (lines 7-9). Joins of the second type P 1P.C1=P.C1∧P.T=f(P.T)

P are evaluated here and the intermediate tuples are pushed to the sub-operators as we
mentioned previously. In the next step, it checks for rules of Class 5 and 6 (lines 10-12),
so it evaluates the join patterns of the first type S 1S.C2=P.C1∧S.T=f(P.T) P . Rules
of Class 5 are applied as a whole, whereas those of Class 6 are applied partially (like
the rules of Class 3) and the intermediate tuples are sent to the sub-operators. Simi-
larly to a typical merge join algorithm, in lines 10-12 we may need to read additional
blocks of S and P in order to ensure that there are no more pairs of tuples (t1, t2) for
which the condition t1.C2 = t2.C1 holds. The only difference with a typical merge
join algorithm lies in the way the blocks of the two relations S and P are fetched from
disk (lines 14-15); some tuples of P remain in the buffer (shifted to the beginning)
even after a subsequent load operation is performed in Q (line 14). This happens only
for the tuples with the maximum Q.C1 value, and only when there are active rules that
require a natural join on Q.C1 (Class 3), so that the operator can consistently apply this
join as a self join on the “sliding window” over P while the main merge-join proceeds
as usual (no additional I/Os occur). We clarify this in the example provided below.
To avoid naive evaluation, i.e., checking previously checked axiom combinations, we
need to evaluate the rules of Classes 1 and 2 on the static relations of Σ only once. To
this end, rules of these classes are active only in the initial step of BRA and they are
deactivated in the following steps. A similar optimization is used for the rules of Class
3 to avoid the unnecessary join between R′i−1G 1el ∆Ri

G. For the ease of presentation,
we assume that the tuples in P (resp. S) with the same C1 (resp. C2) value fit always
in Q (resp. U). Special cases where the large number of tuples requires a nested-loop
join of the inner blocks are not addressed here.

When the main loop of the merge join is completed, unread tuples from P that
need to be checked under the rules of Classes 1, 2, 3 or 4 are handled in lines 17-23.
There, the remaining blocks of P are fetched from disk with sequential scans and the
procedure in lines 3-8 is repeated till the relation is exhausted. We emphasize that
despite the predefined order for checking the different classes of rules in BRA, the
rules are actually applied according to the types of the tuples in the buffers U and Q.
Thus, the order of rules, as we scan S and P , is dynamic and driven by the underlying
data.

Since external joins are needed in the rules of Classes 1, 3 and 6, the interleav-
ing joins with the static relations of Σ occur in lines 5, 8 and 12. Each such join is
performed between a stream of tuples and one of the relations R2, R11, R12, and R48.
Streams for rules of Class 1 are populated with tuples from P in line 5. The respective
streams for the rules of Class 3 and 6 are produced by the self join on P.C1 in line
8 and the join S 1S.C2=P.C1 P in line 12. Obviously, after a join is performed in the
previous two cases, attributes which are no longer needed for producing the final tuples
are discarded. A static relation is associated with exactly one stream, so the latter may
contain tuples belonging to the workload of different rules. This amounts to a concep-
tual re-grouping of the rules at a second level, based on their common join patterns
with the static relations. When an external join is performed, the final tuples are sent

17

to the deltas.

Rid R’
id

9 10

14 15

… …

Rid R’
id R’’

id

4 8 32

1 5 21

3 9 41

7 14 12

… … …

⋈

U Q

IR12

IR13
IR10

IR6

IR9

Cid C’
id C’’

id

17 18 33

… … …

IR2
⋈ ⋈ ⋈ ⋈ IR5

T Cid Rid C’
id

11000 6 14 4

10011 19 7 10

… … … …

IR1

merge join interleaving joins

i+1´

i+1´

i+1´

i+1´

i+1 i+1 i+1

i+1

i+1

∆RG

∆RG ∆RG ∆RG ∆RG ∆RG ∆RG ∆RG ∆RG

R48 R2 R11 R12

i+1´
∆RG

1111 16 7 4
… … … …

T C1 R C2
1011 2 3 4

1011 19 7 10

1001 3 2 11

… … … …

T C1 R2 C2

1011 4 9 15

1111 10 14 6

0001 11 2 17

1001 11 2 18

0111 16 1 6

1111 16 5 6

Figure 6: The el-join operator (U and Q are the “sliding windows” over S and P resp.)

Example. The way the rules are applied is highlighted in the following example. Re-
call that the external relations are kept in memory and that the last 3 bits of the T
attribute in each tuple denote the type of the axiom. Assume a specific point of the
evaluation where the buffers U and Q contain the tuples shown in Fig. 4.1. As implied
by their types, these tuples must be checked under the rules IR1, IR2, IR5, IR6, IR9,
IR10, IR12 and IR13. Note that the previous rules involve all join patterns we have
mentioned. The operator starts by identifying the tuple with the minimum value for
Q.C1 (minQ = 4). It triggers rule IR5, that is, it pushes the tuple 〈(T=3), 4, 9, 15〉
to the stream of R11. Then, it partially applies rule IR6 between the tuples 〈(T=3), 2,
3, 4〉 and 〈(T=3), 4, 9, 15〉 (C1 v ∃R1.C2 ∧ C2 v ∃R2.C3), and pushes the inter-
mediate tuple to the stream of R12. Proceeding with the next minQ value, it pushes
〈(T=7), 10, 14, 6〉 to the streams of R11 and R48 so that IR12 and IR13 are applied,
and partially applies IR9 between the tuples 〈(T=3), 19, 7, 10〉 and 〈(T=7), 10, 14, 6〉
(C1 v ∃R1.C2 ∧C2 v ∃R2.Self). The intermediate tuple is sent to the stream of R12

just like in the case of IR6 before. Now, the next minQ value is 11 and there are two
tuples with this value in Q (both are of type 1). el-join partially applies IR2 on these
two tuples (i.e., the join C1 v C2 ∧ C1 v C3) and sends the intermediate tuple to the
stream of R2. It also applies IR1 between these tuples and the tuple 〈(T=1), 3, 2, 11〉
of U . The output of IR1 is directly sent to the deltas. Finally, let the last tuples of Q
are 〈(T=7), 16, 1, 6〉 and 〈(T=7), 16, 5, 6〉, both of type 7 and with a common value
for the C1 attribute. These tuples belong to the workload of IR10 and IR12. After
the rules are applied similarly to the previous rules, there are no more unconsidered
tuples in Q so the buffer must be loaded with the next tuples from P. Note that the next
tuple from P in the example is 〈(T=7), 16, 7, 14〉 which is also of type 7 and must
be checked under IR10 with both 〈(T=7), 16, 1, 6〉 and 〈(T=7), 16, 5, 6〉 (for the join
C v ∃R1.Self∧C v ∃R2.Self). For this reason, the last two tuples are not discarded
from Q during the load operation; they are kept in the beginning of the buffer to ensure
that IR10 is evaluated correctly in the next step and with no additional I/Os.

18

5 Algorithm Optimizations
This section presents two important optimizations on the baseline algorithm BRA. The
effectiveness of these techniques are highlighted in the experimental section.

5.1 Pruning tuples from the Deltas
In the general case, to guarantee that a rule has considered every combination of old
and new axioms, the latter have to be inserted into both ∆Ri

G and ∆R′iG. Intuitively,
new axioms are additional edges to the graph of Section 3 and by adding them to both
deltas, we ensure that all valid hops will be explored. Still, not every node and edge
in the problem graph is the same; by closely examining the rules we can decide that
some of the new edges do not need to be included in both deltas. This applies to edges
corresponding to axioms of type 7 (C v ∃R.Self) which are only considered together
with other axioms that have a common C value. Based on this observation we can state
the following Lemma (proof is given in Section 6):

Lemma 1 The axioms produced by rules IR11, IR12 and IR15 can be omitted from
R′G and ∆R′iG without altering the final result of the algorithm.

Moreover, the rule IR1 describes a classical transitive property, thus, it can be eval-
uated in a left- or right-linear fashion [44]. In our setting where all rules are evaluated
together, this optimization requires special treatment because the tuples produced by
IR1 are actually updates in the workload of other rules; still, we prove in Section 6 that
the following Lemma holds:

Lemma 2 The axioms produced by rule IR1 can be omitted from ∆R′iG without alter-
ing the final result of the algorithm.

In other words, axioms of type 1 (C1 v C2), are initially replicated to RG and R′G
but in the rest of the algorithm they are only inserted in the right delta (∆Ri

G).

5.2 Rule Application while Merging
Recall that the rules of Classes 1, 2, 3 and 4 require (i) a self-join on RG.C1, (ii) a join
between RG and a static relation of Σ or (iii) no join at all. Thus, they are applied while
traversing the tuples of RG in the merge join between ∆R′iG and RG (lines 1-9 and
17-23 in algorithm el-join). The evaluation of these rules within the el-join operator
implies a certain inefficiency; although the merge join of ∆R′iG and RG does not need
to continue scanning the rest of RG when ∆R′iG has run out of tuples, the operator
exhaustively scans RG (lines 17-23) because of the aforementioned rules. Based on
this, we can improve the baseline algorithm by simply moving the evaluation of all
rules belonging to Classes 1, 2, 3 and 4 to the merge phase of the algorithm BRA (line
12). There, no additional I/Os are required for the evaluation of these rules because all
tuples from ∆R′iG and RG are read and written back to disk anyway in order to update
RG.

19

When applying this optimization, lines 4-9, 14-15 and 17-23 in the algorithm el-
join are omitted since they are essentially transferred to the merge phase. The new
merging procedure is depicted in the algorithm APPLY MERGE. For the ease of pre-
sentation, we assume that the tuples with common C1 value fit always in the merge
buffer(s). Note that the application of a rule in the algorithm APPLY MERGE is per-
formed in exactly the same way we described in Section 4.1; if a rule is applied as a
whole, then the new tuples are sent directly to the output buffers, otherwise they are
pushed into the streams of the static relations. Whenever we use the term “new tuple”
in the pseudocode, we refer to a tuple that is produced in the previous step of the it-
eration. An “old” tuple is one produced in an older step. Recall that this information
is denoted by the first bit of the T attribute of each tuple. This bit is updated when
flushing the tuples to disk after merging.

Algorithm: APPLY MERGE

Input : The relations ∆RG and RG that need to be merged;
Output : The order-preserving relation Rm

1 let Bm be the merge buffer(s);

2 while there are tuples to merge in ∆RG and RG do
3 mark tuples in R as “old” using the corresponding bit in the T attribute;

4 move as many tuples as possible from ∆RG and RG into Bm so that the total order
with respect to the sort attributes is preserved.

5 identify the minimum C1 value in Bm, let minB ;

6 for each unconsidered tuple t : t is “new” and t.C1 = minB do
7 apply active rules of Class 1;

8 trigger active rules of Class 2;

9 for each unconsidered pair of tuples (t1, t2) ∈ Bm : t1 is a “new” tuple and t1.C1 =
t2.C1 = minB do

10 trigger active rules of Class 3;

11 apply active rules of Class 4;

12 if there are shifted tuples from a previous step then
13 remove shifted tuple(s) from Bm;

14 if Bm is full then
15 flush tuples to disk; //mark tuples as ‘‘old’’

16 shift the tuple(s) with the maximum C1 value in the beginning of Bm;

6 Theoretical properties
In this section we provide a proof sketch for two important properties of our algorithm:
(i) its correctness and (ii) its efficiency. In the former case we show that it produces all

20

valid tuples with respect to the rules of Fig. 3 and in the latter we prove that it follows
a semi-naive evaluation strategy, i.e., it does not produce the redundant intermediate
results of a naive approach.

6.1 Correctness
We prove that the proposed algorithm and its optimizations provide the correct result
with respect to the inference rules. To show this we have to show that (i) a complete
evaluation of the el-join is equivalent to the application of every rule in isolation, and
(ii) the pruning optimization of Section 5 does not affect the final result.

6.1.1 el-join operator

In Section 4.1 we showed that the el-join operator evaluates every single rule of Figure
3. The evaluation takes into account all self joins on RG (that is, the joins between RG

and its copy R′G as well as the self joins on RG.C1), and also the joins with the static
relations wherever needed (completeness). Moreover, the initial axioms have a 1-1
mapping to their relational representation, as explained in Section 3. This guarantees
that each rule will only consider the correct tuples and, hence, no incorrect results are
produced (soundness). Intuitively, the output of the el-join operator is exactly the same
with the output of an algorithm that tests each rule sequentially; the only difference is
that our operator avoids scanning R′G and RG again and again for each one of the 16
rules of Fig. 3. What remains to be shown is that the iterative application of el-join on
the schema Σ of Section 3 still produces the correct result.

6.1.2 Fix-point evaluation

Lemma 3 The algorithm BRA will terminate after producing exactly the same result
with an algorithm that applies each rule of Fig. 3 sequentially.

Proof (Sketch) Within our graph-based modeling, it is easy to see that the our algo-
rithm will terminate. Since the inference rules add only new edges to the graph of
Section 3 but no new nodes, in the worst case the fix-point is reached when all possible
types of edges appear between every single pair of nodes in the graph. The types of
edges are finite and their number is equal to the size of LE (see Section 3). We now
show that the baseline algorithm of Section 4 (without any optimizations) produces the
same result with a fix-point algorithm that applies one rule after the other.
No invalid results are created. We have shown that the el-join creates only the tuples
that a single application of every rule would create. Thus, the first time that el-join is
applied to the whole dataset, it will produce only tuples that will eventually be found
by the naive recursive application of the rules. By induction, in the i-th iteration of
BRA all axioms in Ri

G and R′iG are correct (i.e., they will be found by the sequential
method too) because el-join will have produced only valid tuples in the previous steps.
Thus no invalid tuples can be found by BRA.
No results will be omitted. Assume that the algorithm BRA is completed and it has
not found at least one valid tuple t. This means that, at its last step, it applied el-join

21

and the latter did not produce any new tuples. Since we showed that BRA does not
produce any wrong tuples, then at the last step all axioms should be correct, i.e., they
will be detected by the sequential algorithm. Moreover, since BRA does not delete any
tuple, the produced result will be a superset of the initial tuples. This means that if we
apply the sequential method to the result of BRA it should discover the missing tuples.
To do so, at least one inference rule that is applied once (and in isolation) to the result of
BRA should produce at least one tuple that is not producible by el-join. Since el-join
is equivalent to the sequential application of all inference rules, this cannot happen,
thus, BRA cannot miss any result.

6.1.3 Pruning

Proof LEMMA 1. (Sketch) The reason a tuple t of type 7 (C v ∃R.Self) is not needed
in R′G and ∆R′G lies in the way the el-join operator works and the fact that such tuples
are joined with a tuple from RG only on the C1 attribute. This is done in rules IR8,
IR9, IR10, IR11, and IR14. As shown in the algorithm el-join of Section 4.1, the only
type of join that requires a tuple to be included in the left relation S, i.e., in R′G and
∆R′G, is the join R′G.C2 1 RG.C1 (lines 10-12). All other joins are performed with
tuples of the right relation P , i.e., with tuples of RG and ∆RG. Since tuples of type 7
do not participate in such a join pattern, they can be included only in RG and ∆RG.

Proof LEMMA 2. (Sketch) Tuples of Type 1 are needed by the rules IR1, IR3 and
IR11 on the left side, i.e., on R′G and ∆R′G. When considering each rule in isolation, it
is known that IR1 can be evaluated correctly in a right-linear fashion, so the new tuples
can be appended only to ∆RG [44]. What remains is to prove that the same holds for
rules IR3 and IR11 when all rules are evaluated together. Let E = {t1, t2, t3, ..., tn},
n ≥ 2, be a set of tuples of type 1 such that ti.C2 = ti+1.C1, 0 < i < n. Intuitively,
these tuples define a “path” between the nodes t1.C1 and tn.C2. Let also tp be a tuple
that is created by the recursive application of IR1 on E such that tp.C1=t1.C1 and
tp.C2=tn.C2. Now, consider a tuple t of type 3 such that tn.C2 = t.C1. According to
IR3, tuples tp and t must be joined in order to produce a new tuple t′ such that t′.C1 =
t1.C1, t′.R = t.R, and t′.C2 = t.C2. In case tp is appended only to ∆RG, the Algorithm
BRA is not going to perform this join. However, the same tuple t′ can be created by
the recursive application of IR3 on the tuples of E as follows. First, we apply IR3
on the pair of tuples (tn, t) and produce the tuple u1, then we do the same on the pair
(tn−1, u1) and produce the tuple u2, then on the pair (tn−2, u2) and so on till the tuple t′

is produced. Algorithm BRA will correctly perform the previous recursive application
of IR3 if and only if (a) each tuple of type 3 exists in the right side, and (b) the set E
of tuples exists in the left side. The former is true since every tuple is appended to the
right side. Regarding the latter, we have to distinguish three cases:

1. All tuples in E exist in RG from the beginning. In this case, the tuples exist in
both sides since they are copied from RG to R′G in initialization.

2. A tuple in E is produced by a rule other than IR1. In this case the tuple exist in
the left side because all tuples of type 1 which are produced by a rule other than
IR1 are appended to both deltas.

22

3. A tuple in E is produced by IR1. In this case, the tuple was produced (and,
hence, it can be substituted in E) by a chain of tuples like the one we considered
before. By inductively applying the same process to each tuple produced by IR1
in this chain, we result with a set of tuples that define the needed path and exist
in the left side due to 1 or 2.

6.2 Semi-naive Evaluation
Lemma 4 The algorithm BRA is equivalent to a semi-naive evaluation of each rule
of Fig. 3 in isolation.

Proof The approach we described is equivalent to a semi-naive evaluation of each rule
in isolation and it does not materialize any redundant facts. For the rules of Classes
4 and 5 that include a join of the form R′G 1R′G.C2=RG.C1∧R′G.T=f(RG.T) RG, this is
guaranteed by the overall design of the algorithm and the use of the two deltas. Specif-
ically, each pair of tuples joined in lines 11 and 13 of the algorithm BRA includes at
least one “new” tuple, i.e., a tuple belonging to the relation ∆R′iG and/or ∆Ri

G. These
deltas are produced in the (i − 1)-th step of the iteration and participate in the el-join
only after removing the “old” tuples (lines 9 and 10 in BRA). Note that in the join
∆R′iG 1el R

i
G (line 13 in BRA) both tuples may be “new” since ∆Ri

G is included in
Ri

G.
Regarding the rules of Class 3 and 4 that include a self join of the second form, i.e.,

RG 1RG.C1=RG.C1∧RG.T=f(RG.T) RG, the semi-naive evaluation is achieved in a
different way. The complete application of these rules needs all tuples produced till
the i-th step of the procedure, thus, they are applied only in the join ∆R′iG 1el R

i
G

(line 13 in the algorithm BRA), as a self join on the “sliding window” over Ri
G (lines

7-9 in the algorithm el-JOIN). In order to guarantee that the “old” tuples will not be
checked one another under the same rules at that point, we need to distinguish these
tuples from those produced in the previous step (i − 1). This information is encoded
in the T attribute of each tuple just before the join ∆R′iG 1el R

i
G, i.e., when merging

the relations Ri−1
G and ∆Ri

G in the i-th step (line 12 of the algorithm BRA). There,
all tuples coming from Ri−1

G are marked as “old”, whereas the tuples from ∆Ri
G are

marked as “new” (default value).
The remaining rules of Classes 1 and 2 are evaluated in a semi-naive fashion using

a third technique. Since these rules involve either a join with the static relations of Σ
or no join at all, they should be applied only to each “new” tuple of P (lines 5-6 in the
algorithm el-JOIN), i.e., only to the tuples of R0

G in the first iteration and the tuples
of ∆Ri

G at each subsequent step. Instead of using an additional condition on the T
attribute there, we can simply activate these rules only in the initial join R′0G 1el R

0
G

and the join R′i−1G 1el ∆Ri
G (lines 4 and 11 in the algorithm BRA). As implied in

the previous paragraph, this technique is also used in the rules of Class 3. The latter
are deactivated in the join R′i−1G 1el ∆Ri

G because ∆Ri
G does not include all tuples

produced in the previous steps.

23

7 Performance Evaluation
In this section we present an experimental evaluation of BRA on real and synthetic on-
tologies. Our algorithm is compared with an alternative bottom-up algorithm, termed
ORT , that applies the rules independently, and also with the most mature implemen-
tations of the state-of-the-art inference algorithms from the related work.
Experimental Setting. We compared BRA with the state-of-the-art systems in the
three areas of related work: Prolog-based systems (YAP [7] and XSB [6]), Deductive
databases (DLV [3] and LogicBlox [4]). These tools are the most actively maintained
and mature implementations in the respective fields [36]. The Prolog-based systems
follow a top-down evaluation strategy whereas DLV and LogicBLox are bottom-up
Datalog engines. All these systems operate only in main-memory and they were al-
lowed to use the entire memory of the machine. Since none of these systems offer
built-in support for the fragment of OWL2-EL, all inferences rules of Fig. 3 were
defined manually.

To provide a better understanding on the benefits of BRA and since the imple-
mentation details of the aforementioned systems are not always transparent, we imple-
mented an ORT (One Rule at a Time) algorithm which applies each rule independently
as described in [24]. In the experiments below, ORT operates on the most favorable
storage scheme for its evaluation strategy, that is, a scheme with one separate relation
per type of axiom as explained in Section 3.1. The ORT algorithm applies the rules
as follows. First, IR1 and IR2 are interchanged: IR1 is applied exhaustively, then
followed by IR2 which is applied once, and this procedure is repeated until no new
axioms are created. After this, it applies all other rules in a round-robin fashion, i.e,
each one of the remaining rules is applied once, and the algorithm returns to the first
step. The whole process repeats until no more axioms are produced. This version of
ORT (first IR1 and IR2 exhaustively, and then the rest) outperformed the completely
naive approaches where all rules are applied only once at each step of the iteration.
Just like BRA, ORT applies each rule in a semi-naive fashion; previously examined
combination of axioms are ignored and only new ones are considered at each step of
the procedure.

BRA operates on 5 base relations (schema of Fig. 5), which are stored in 5 files.
To demonstrate the effectiveness of the optimization heuristics we also implemented a
simplified version of BRA, namely SN (from semi-naive), which is basically BRA
without any optimization heuristic of those discussed in Section 5.1. Moreover, to
highlight how BRA can exploit modern hardware with a large amount of memory,
we created a main-memory version of BRA, denoted as BRA-M . BRA-M operates
like BRA but, given enough memory, it caches the base relations, creates a hash index
on R′G.C2 and another one on RG.C1, and performs hash joins instead of sort-merge
joins. We emphasize that BRA-M is not proposed as a state-of-the art main-memory
algorithm; we only use it to demonstrate how BRA can exploit a very large cache.
Finally, to clearly assess the impact of the storage scheme on BRA, the latter is applied
on the schema used for ORT (one relation per type of axiom) and report the results for
this version as BRA-A.

For a fair comparison, we always give BRA, BRA-A, ORT and SN the same

24

total amount of memory buffers (default setting is 40MBs). In BRA, BRA-A and
SN , the given memory is used for performing the steps described in Section 4. Note
that, even with this small amount of memory, the static relations of Fig. 5 can be
completely cached (after the first step of the iteration), still, leaving enough memory
for BRA to operate. A small amount of memory is also kept for the output buffers.
In the case of ORT , the static relations can again be completely cached (after the first
step of the iteration), and the rest of the cache is used for (i) the joins between the
different relations, (ii) the external sortings during the iterations, (iii) the set difference
operations, and (iv) the output buffers.
Datasets. We used two large datasets from the biomedical domain, namely SNOMED
CT [14] and GALEN8 [12] which are used in various clinical studies. SNOMED CT
has 379692 classes, 61 roles, 623999 class inclusions and 11 role inclusions. GALEN8
has 125391 classes, 995 roles, 280693 class inclusions and 1387 role inclusions. Both
ontologies have many class inclusions with complex dependencies and, thus, they have
become the “standard” ontologies in all published benchmarks for OWL reasoners.
Their complexity is reflected in the large number of new (implicit) axioms produced by
the inference (more than 11M for SNOMED CT and 30M for GALEN8). Using these
real-world data, we also created synthetic data of various sizes in order to evaluate the
scalability of our approach. The synthetic data are multiplications of the original in
two ways. First, we kept the same forms of axioms but added copies of each axiom
by replacing the IDs of the classes appearing in it. In this case, the resulting dataset
represents multiple graphs which are isomorphic to the original. Second, we kept the
number of classes (nodes) constant and multiplied the number of properties (labeled
edges in the graph of Section 3). This way, we essentially multiply the number of
axioms of type 3, 4, 7 and 8 as well as the related property axioms (i.e., the axioms
of type 11 and 12). Intuitively, the second method results in a graph with larger node
degree; it is applied only to GALEN8 because SNOMED CT contains no axioms of
type 12 and very few of type 11.
Implementation details. All our algorithms were implemented in C++ (g++ 4.6.3).
The experiments were conducted on a machine running Linux Ubuntu (3.5.0-40) with
a CPU at 3.60GHz, 64Gb of RAM, and a 750Gb SATA hard disk. In order to present
accurate results about memory utilization and the exact performance of each algorithm
under a limited memory budget, all disk-based implementations (SN , BRA, BRA-A
and ORT) bypass the kernel’s caching mechanism by performing the I/O operations
with the Linux O DIRECT flag. Note that the reported results do not include the cost
of normalization which is very small (11 seconds for SNOMED CT and 29 seconds for
GALEN8) and needed by both of our algorithms and all third party competitors.
Comparison with other methods. We compare all methods in terms of running time,
split as CPU time and I/O time (we estimate it as total time minus CPU time), and
in terms of I/O disk accesses for disk based methods. In all experiments, time is
given in seconds, The results are depicted in Fig. 7.a (SNOMED CT) and in Fig.
7.b (GALEN8). Amongst all the systems we tested, only XSB managed to termi-
nate on GALEN8; the rest either crashed or did not terminate after running for hours
(more than three hours). We observe that BRA outperforms all competitor systems
(except YAP in the SNOMED CT dataset) even if they do only main-memory evalu-

25

 0

 200

 400

 600

 800

 1000

 1200

 1400

BRA ORT BRA-M YAP XSB DLV LBOX

IO CPU

 0

 1000

 2000

 3000

 4000

 5000

 6000

BRA ORT BRA-M XSB

IO CPU

(a) (b)

 0

 1000

 2000

 3000

 4000

 5000

 6000

SN BRA ORT BRA-A SN BRA ORT BRA-A

IO CPU
GALEN8SNOMED CT

 0

 1e+007

 2e+007

 3e+007

 4e+007

 5e+007

 6e+007

 7e+007

 8e+007

 9e+007

SN BRA ORT BRA-A SN BRA ORT BRA-A
GALEN8SNOMED CT

(c) (d)
Figure 7: Performance in SNOMED CT and GALEN8

ation. The BRA-M algorithm slightly outperforms YAP even for SNOMED CT (60
secs for BRA-M vs 68 for YAP). The memory requirements of all systems are sig-
nificant: for SNOMED CT, YAP needs 2.2G, XSB 1.8G, DLV 3.6G and LogicBlox
18G of memory. This amounts to an increase of x14, x12, x24, x121 compared to the
size of the input dataset (148MB in OWL/XML format). For GALEN8, XSB needs
5.3G (x19 increase - the initial dataset size is 274MB in OWL/XML format). Note
that the previous results correspond to the maximum memory allocated by the process
that performed the inference. Moreover, we tried to compare BRA to OWLIM [21]
and Jena [1], but they failed to compute the logical closure in both datasets (they both
operated for more than 24 hours without any result). Finally, an important observation
from the results of BRA and ORT is that computing logical closure on the disk is an
I/O-bounded problem, since the evaluation time of both these algorithms is dominated
by I/O time.
Understanding BRA’s performance factors. We compared BRA to the basic semi-
naive strategy SN to understand the impact of our optimizations, and to BRA-A to
understand the impact of the storage scheme in the overall performance of BRA. The
results are depicted in In Fig. 7.c and Fig. 7.d in terms of seconds and I/O accesses
respectively. The optimizations we propose give a 28% speedup to BRA with respect
to SN and the storage scheme provides 30% faster evaluation for BRA with respect
to BRA-A for SNOMED CT and 20% for GALEN8. Note that SN is worse than
BRA due to the lack of logical optimizations but, still, it is much better than ORT
(in terms of both time and I/Os). The reason BRA-A performs worse than BRA is
that is causes an increased number of random I/Os. Since it has to scan more than two

26

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

SN BRA ORT

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

SN BRA

(a) (b)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

SN BRA

(c)
Figure 8: Scaling with dataset size (time in seconds)

relations at each step of the iteration (not only R′G and RG), it cannot fetch as large
blocks with sequential scans as BRA; the input buffers must be split according to the
base relations and, hence, each relation is assigned with a smaller buffer. Finally, BRA
takes less than 30% of the ORT time, in both datasets, and this performance gain is
reflected in the total number of I/Os each algorithm performs.
Scaling with the dataset size. Fig. 8 and 9 demonstrate how BRA and ORT scale
with the dataset size. ORT did not terminate within a reasonable time for the GALEN8
datasets due to the increased number of I/Os, so it is omitted from the respective figures
(Fig. 8.b, 8.c, 9.b and 9.c). In Fig. 8.a and 8.b we see results when the dataset size
increases. The datasets in these two experiments have been created by multiplying
SNOMED CT and GALEN8 respectively according to the first method we described
previously. The x-axis traces the multiplication factor (e.g., in Fig. 8.a for x = 1 we
have the original SNOMED CT, for x = 2 we have a dataset that is double the original
SNOMED CT and so on). The y-axis traces the performance in seconds. We can see
that BRA scales linearly as ORT but with a significantly smaller slope. We also note
that the optimization heuristics present the same behaviour, hence, by improving the
performance of the algorithm in each iteration, they reduce the scaling slope even more.
Finally, in Fig. 8.c we see how BRA behaves as the number of edges grow according
to the second multiplication method. Again the behavior is linear, but we notice that
the effect of the pruning heuristic is more substantial. The reason behind this lies in the
number of duplicated tuples produced by IR3. In GALEN8, IR6 produces too many
tuples of type 3 which, in combination with tuples of type 1 and rule IR3, produce even
more tuples of type 3. By pruning tuples of type 1 from the left delta (Section 5.1), IR3

27

 0

 2e+007

 4e+007

 6e+007

 8e+007

 1e+008

 1.2e+008

 1.4e+008

 0 1 2 3 4 5

SN BRA ORT

 0

 2e+007

 4e+007

 6e+007

 8e+007

 1e+008

 1.2e+008

 1.4e+008

 0 1 2 3 4 5

SN BRA

(a) (b)

 0

 2e+007

 4e+007

 6e+007

 8e+007

 1e+008

 1.2e+008

 1.4e+008

 0 1 2 3 4 5

SN BRA

(c)
Figure 9: Scaling with dataset size (disk page accesses)

produces significantly less duplicated tuples at each step of the iteration and, hence,
both the CPU time and the total I/Os are reduced. The I/Os performed in each one of
the experiments of Fig. 8.a, 8.b, and 8.c are given in Fig. 9.a, 9.b, and 9.c respectively.
Note that the impact of the heuristics is more profound in terms of execution time,
since pruning significantly reduces CPU time as well.

In summary, there are no I/O-aware methods for evaluating the logical closure and
even those that can evaluate the closure in main memory cannot outperform BRA in
most cases. Moreover, we showed that the proposed storage scheme and the optimiza-
tion heuristics have a significant impact on BRA.

8 Related Work
Artificial Intelligence. Regarding the fragment of OWL2-EL, the rule-based ap-
proach we highlighted in Section 2 was introduced in [17, 19]. All widely-used rea-
soners (also known as EL classifiers) [25] work in main memory and use a variation
of the algorithm presented in [19]. Highly-optimized versions of this algorithm can
be found in [31] and [2]. Despite their particular differences, all approaches rely on
creating dynamic lists for each class of the dataset (in main memory) and keep track
of the axioms that contain it. Inference rules use the lists to detect axioms that contain
a class and update them with the new axioms they infer. The design of the in-memory
algorithms is based on the assumption that the cost of lookups and updates in the lists
is negligible (which is true for main-memory systems where the lists are implemented
as a hash map). Using these methods for disk-based evaluation is clearly inefficient

28

since they would perform a huge number of random I/Os, hence, they are unsuitable
for our problem setting.
Deductive Databases and Prolog-based Systems. Research in deductive databases
and Prolog-based systems focuses mainly on the logical optimization of queries with
at least one of the variables bounded. In our particular problem, such a query would be
the query “subClassOf(c,X)?” where c is the ID of a specific class in the ontology and
X is a variable. Intuitively, this query asks for all superclasses of c. The problem we
address here requires the answers to queries of the form “subClassOf(X,Y)?” which
have no bounded variables. Regardless the existence of free or bounded variables in
a query, Prolog-based systems will always evaluate it following a top-down strategy.
A top-down algorithm starts from the given query (goal), it substitutes this goal with
its subgoals (i.e., with the predicates found in the body of a rule where the initial goal
appears as head), then it recursively substitutes all these subgoals with their respective
subgoals and so forth. When the query is bounded, the approach we described can
limit the search space and avoid infering axioms that are irrelevant to the query [20].
However, in the logical closure computation all facts are relevant, hence, the evaluation
cannot benefit from the pruning power of the top-down strategy. At the same time, the
substitution of goals with subgoals adds significant overhead (both in time and space)
and it has also the problem of entering in infinite loops (although the latter is avoided
with the use of Tabling [43]). In our particular setting, note that the inference rules
of Fig. 3 have many common predicates in the head of the rules; this means that a
top down algorithm would have to examine many different paths of substitutions for
evaluating a predicate. On the other hand, a bottom-up strategy for a query “subClas-
sOf(X,Y)?” will exhaustively evaluate each rule of Fig. 3 (in a semi-naive fashion),
and terminate when there are no new tuples to produce. This simple logic proves more
efficient for logical closure, i.e., when the algorithm has to compute “everything”. As a
final comment, the well-known Magic Sets optimization [38, 39] has been proposed for
reducing the irrelevant facts in a bottom-up evaluation of a (partially) bounded query,
hence, the logical closure computation cannot benefit from it.

An interesting db-oriented approach for ontology management is recently presented
in [22, 27]. This work extends Datalog in order to express axioms like those of Fig.
1 as rules. Note that some axioms in OWL are not interpretable into safe Datalog
rules without this extension. Representative examples are the axioms of the form C1 v
∃R.C2 which define Tuple-Generating Dependencies (TGDs) and whose entailments
are traditionally checked using the Chase algorithm. The theoretical framework pre-
sented in these papers is targeted to query answering and it is not optimized for the
logical closure computation.
Relational databases. Recursive queries in relational databases can be expressed up to
some extent with the Common Table Expressions (an SQL standard) or the proprietary
features of some systems like Oracle’s CONNECT BY. The main drawback of such
approaches is that the inference rules of Fig. 3 cannot be expressed in a single SQL
query and, thus, they can only be evaluated sequentially, i.e., one rule (query) after the
other in a predefined order. As a result, the disk-resident relations are accessed on a
per-rule basis that is extremely inefficient in terms of both CPU and I/O cost. ORT
algorithm follows exactly this approach and its performance drawbacks with respect to

29

BRA are highlighted in Section 7.
Work in [26] performs the inference tasks with a main-memory OWL reasoner and

uses the database mainly as a backend. On the other hand, [35] and [24] take advantage
of the RDBMS’s built-in features and employ User Defined Functions (UDFs) to ex-
press the recursive rules. Still, they apply each rule independently from the others like
ORT . A recent approach in the field is Oracle’s Semantic Graph [5], a disk-oriented
platform for reasoning with various OWL fragments. In this system, the application of
the inference rules is provided as a single database operator.
Multiple-query Optimization. The multiple-query optimization paradigm we adopt
has been extensively studied in the database community [29, 40, 41]. These works
differ from ours in the following. First, they are general in that they can handle queries
arbitrarily given by the user. Here the recursive rules are predefined which allows for
custom optimizations. Second, their main focus is on reusing the intermediate query
results. Here we use the common parts of the rules as a pattern to access the data and
save I/Os.
Semantic Web Systems. Recently, there is an increasing interest in the management of
incomplete RDF knowledge bases. To this end, the new specification of SPARQL [10]
incorporates similar reasoning tasks to those we presented here so that the evaluation of
queries on top of RDF graphs can capture the “hidden” relationships (edges) implied by
the semantics of RDFS and OWL. This is a rather uninvestigated and intriguing setting
where the results of our work could be also exploited. [37] and [46] are motivated
by the same principle, however, from a different perspective. They support general
user-defined rules and they do not address any of the multi-query optimizations we
consider here. Other triple stores with inference support are Jena [1] and OWLIM [21].
These tools are designed for storing and querying RDF data, hence, every OWL axiom
is internally represented as an RDF triple or a set of RDF triples depending on how
complex it is. This design leads to a significantly more verbose representation of the
axioms compared to the one of Section 3 and, hence, more complicated (n-way) joins
are required for applying the rules. None of these systems supports built-in reasoning
algorithms for OWL2-EL but they offer generic rule engines where the rules can be
defined manually. Jena supports top-down and bottom-up evaluation whereas OWLIM
has a pure bottom-up engine. Again, rules in these systems are applied sequentially
like in ORT .

9 Conclusions
In this paper we proposed an I/O-aware algorithm that efficiently computes the logical
closure of a set of inference rules on large OWL2-EL ontologies. The salient feature
of our approach is that we model and store the ontology axioms in a homogeneous
way so that different inference rules are evaluated in bulk and within the same I/O
operations. We demonstrated experimentally that our algorithm outperforms existing
strategies and scales very well to large datasets. A future research direction is to extend
our work in other fragments of OWL, e.g., OWL2-RL, where rule-based inference is
already a common practice.

30

References
[1] Apache Jena. https://jena.apache.org/.

[2] CB reasoner. http://www.cs.ox.ac.uk/isg/tools/CB/.

[3] DLV System. http://www.dlvsystem.com/.

[4] LogicBlox. http://www.logicblox.com/.

[5] Oracle Spatial and Graph 12c - RDF Semantic Graph (white papers).
http://www.oracle.com/technetwork/database/options/
spatialandgraph/documentation/rdfsem-techinfo-1916685.html.

[6] XSB Prolog. http://www.xsb.com/what-we-do/emerging-
technologies/xsb-prolog.

[7] Yet Another Prolog. http://www.dcc.fc.up.pt/ vsc/Yap/index.html.

[8] RDF Vocabulary Description Language 1.0: RDF Schema. http://www.w3.org/TR/rdf-
schema/, February 2004.

[9] OWL 2 Web Ontology language Structural Specification and Functional-style Syntax.
http://www.w3.org/TR/owl2-syntax/, 2009.

[10] SPARQL 1.1 Query Language. http://www.w3.org/TR/sparql11-query/, November 2012.

[11] Foundational Model of Anatomy. http://sig.biostr.washington.edu/projects/fm/AboutFM.html,
2013.

[12] Generalized Architecture for Languages, Encyclopedias and Nomenclatures in Medicine.
http://www.openclinical.org/prj galen.html, 2013.

[13] NCI Thesaurus. http://ncit.nci.nih.gov/, 2013.

[14] Systematized Nomenclature of Medicine - Clinical Terms. http://www.ihtsdo.org/snomed-
ct/, 2013.

[15] R. Agrawal, S. Dar, and H. V. Jagadish. Direct transitive closure algorithms: Design and
performance evaluation. TODS, pages 427–458, 1990.

[16] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query processing. In
SIGMOD, 2000.

[17] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In IJCAI, 2005.

[18] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University Press,
2003.

[19] F. Baader, C. Lutz, and B. Suntisrivaraporn. Efficient reasoning in EL+. In DL, 2006.

[20] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strange ways to
implement logic programs. In PODS, 1986.

[21] B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev, and R. Velkov. OWLIM: A
family of scalable semantic repositories. In Semantic Web J, 2011.

[22] A. Cali, G. Gottlob, and A. Pieris. Advanced processing for ontological queries. PVLDB,
3(1):554–565, 2010.

[23] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, and M. Ruzzi. Using
OWL in data integration, 2009.

[24] V. Delaitre and Y. Kazakov. Classifying ELH ontologies in SQL databases. In OWLED,
2009.

31

[25] K. Dentler, R. Cornet, A. ten Teije, and N. de Keizer. Comparison of reasoners for large
ontologies in the OWL 2 EL profile. Semantic Web, 2(2), 2011.

[26] J. Dolby, A. Fokoue, A. Kalyanpur, E. Schonberg, and K. Srinivas. Scalable Highly Ex-
pressive Reasoner (SHER). J. Web. Sem., 7(4), 2010.

[27] G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: Rewriting and optimization. In
ICDE, 2011.

[28] H. V. Jagadish, R. Agrawal, and L. Ness. A study of transitive closure as a recursion
mechanism. In SIGMOD, 1987.

[29] M. Jarke. Common subexpression isolation in multiquery optimization. Query Processing
in Database Sys., 1985.

[30] Y. Kazakov, M. Kroetzsch, and F. Simancik. Practical reasoning with nominals in the EL
family of description logics. In KR, 2012.

[31] Y. Kazakov, M. Krötzsch, and F. Simančı́k. ELK Reasoner: Architecture and Evaluation.
2012.

[32] V. Kolovski, Z. Wu, and G. Eadon. Optimizing enterprise-scale OWL 2 RL reasoning in a
relational database system. In ISWC, 2010.

[33] M. Kroetzsch. Efficient inferencing for the description logic underlying OWL EL. Techni-
cal Report 3005, Institute AIFB, Karlsruhe Instistute of Technology (KIT), 2010.

[34] M. Kroetzsch. Efficient rule-based inferencing for OWL EL. In IJCAI, 2011.

[35] M. Kroetzsch, A. Mehdi, and S. Rudolph. Orel: Database-driven reasoning for OWL 2
profiles. In DL, 2010.

[36] S. Liang, P. Fodor, H. Wan, and M. Kifer. OpenRuleBench: An analysis of the performance
of rule engines. In WWW, 2009.

[37] N. Nakashole, M. Sozio, F. M. Suchanek, and M. Theobald. Query-time reasoning in
uncertain RDF knowledge bases with soft and hard rules. In VLDS, 2012.

[38] R. Ramakrishnan. Magic templates: A spellbinding approach to logic programs. J. Log.
Program., 11(3-4):189–216, 1991.

[39] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Rule ordering in bottom-up fixpoint
evaluation of logic programs. TKDE, 6(4), 1994.

[40] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms for
multi-query optimization. In SIGMOD, 2000.

[41] T. Sellis. Multi-query optimization. TODS, 13(1):23–52, 1988.

[42] S. Suwanmanee, D. Benslimane, P.-A. Champin, and P. Thiran. Wrapping and integrating
heterogeneous databases with OWL. In ICIES, 2005.

[43] K. T. Tekle and Y. A. Liu. More efficient Datalog queries: Subsumptive Tabling beats
Magic Sets. In SIGMOD, 2011.

[44] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Vol. II. Computer
Science Press, 1989.

[45] Z. Wu, G. Eadon, S. Das, E. I. Chong, V. Kolovski, M. Annamalai, and J. Srinivasan.
Implementing an inference engine for RDFS/OWL constructs and user-defined rules in
oracle. In ICDE, 2008.

[46] M. Yahya and M. Theobald. D2R2: Disk-oriented deductive reasoning in a RISC-style
RDF engine. In RuleML, 2011.

32

